

IC Chip and Packaging Interactions in Design for SI, PI, EMC and ESD

Makoto Nagata

Kobe University Graduate School of Science, Technology and Innovation

April 22nd, 2021 in Switzerland Chapter

2021 Solid State Circuit Society Webinars

About Prof. Dr. Makoto Nagata

- 1. 1991, 1993, B.S., and M.S. degrees in physics from the Gakushuin University, Tokyo.
- 2. 2001 Ph.D. in electronics engineering from Hiroshima University, Hiroshima.
- 3. 2002-2009, Associate professor at Kobe University
- 4. 2009, Full professor at Kobe University
- 5. 2020 SSCS AdCom member
- 6. Distinguished contribution to SSCs

http://www.edu.kobe-u.ac.jp/stin-secafy/

- 1. Introduction
- 2. Power noise simulation and diagnosis techniques
- 3. Power noise problems and solutions in advanced packaging
- 4. Summary

Power noise problems

Copyright Makoto Nagata, Kobe University -4-

Power noise analysis and diagnosis

Analysis: full-system level power noise simulation using C-P-S^{*1} models

Diagnosis: on-chip power noise measurements using OCM^{*2}

*¹Chip-package-system board *²On-chip noise monitor

Copyright Makoto Nagata, Kobe University -5-

On-chip power noise monitoring

M. Nagata et al., "Measurements and Analyses of Substrate Noise Waveform in Mixed Signal IC Environment," CICC 1999.

Copyright Makoto Nagata, Kobe University -6-

OCM typical example

Copyright Makoto Nagata, Kobe University -7-

C-P-S* model for power noise analysis

*Chip-Package-System board

Full-system level simulation of power-noise generation and interference

Copyright Makoto Nagata, Kobe University -8-

General flow of C-P-S modeling

General flow of C-P-S modeling

SOL D-STAT

PCB impedance

Full-wave EM simulator solves PCB with FR-4 multiple layers.

Copyright Makoto Nagata, Kobe University -11-

PDN impedance model

C-P-B integrated passive model, capturing AC impedance seen from power source side (VDD)
Copyright Makoto Nagata, Kobe University -12-

General flow of C-P-S modeling

Copyright Makoto Nagata, Kobe University -13-

Chip power model

CPM -- power delivery network involving multiple power current models

Copyright Makoto Nagata, Kobe University -14-

Power current model (active part)

Copyright Makoto Nagata, Kobe University -15-

Liner network model (passive part)

Liner network model (passive CPM) -- reduced and distributed RC network among explicit ports
Copyright Makoto Nagata, Kobe University -16-

Power noise: C-P-S active interaction Solid-State

C-P-S integrated models for power noise in IC chips and PCB

Copyright Makoto Nagata, Kobe University -17-

1. Introduction

2. Power noise simulation and diagnosis techniques

- 3. Power noise problems and solutions in advanced packaging
- 4. Summary

IC chip packaging (2D)

Chip on board (CoB)

Ball grid array (BGA) IC chip (Face down) Solder ball Plastic interposer Printed circuit board

Most popularly used IC chip packaging structures

EM noise emission (measured)

- CMOS gates switching at 100 MHz (clock signal) produce high order harmonics in electromagnetic (EM) radiation over 6 GHz.
- Insignificant difference in EM radiation among CoB and BGA packaging structures.

Copyright Makoto Nagata, Kobe University -20-

Fan-out packaging (2.5D)

Cross-section view

Birds view

A thin-film, multiple layer interconnect interposer for accommodation of multiple chips in a package

Copyright Makoto Nagata, Kobe University -21-

PDN with land-side capacitors

Very proximate placements of capacitors (land-side caps) to chip pads, potentially suppressing PS noise.

H. Sonoda *et al.*, "In-Place Power Noise and Signal Waveform Measurements on LVDS Channels in Fan-Out Multiple IC Chip Packaging," EMC Compo 2019.

Copyright Makoto Nagata, Kobe University -22-

On-chip waveforms in FO package

► In-place waveforms over V_{DD} of LVDS channels (Tx) within fan-out packaging

Copyright Makoto Nagata, Kobe University -23-

Power noise suppression by LS caps

Data pattern : 1010110011001100 Clock frequency : 750 MHz Voltage resolution : 100 μ V Time resolution : 10 ps

Fan-out landside (LS) caps attenuate dynamic power noise within IC chips.

Copyright Makoto Nagata, Kobe University -24-

Wide I/O test vehicle (3D)

3D TSV chip stack demonstrator featuring 4096b Wide I/O at 100 GB/s

S. Takaya *et al.*, "A 100GB/s Wide I/O with 4096b TSVs Through an Active Silicon Interposer with In-Place Waveform Capturing," ISSCC 2013.

Copyright Makoto Nagata, Kobe University -25-

Stack structure

- Silicon technology 90 nm CMOS, 8LM, 1.2 V 9.9 mm x 9.9 mm Mem. chip (1.8 Mgate, 800 kB) Interposer Logic chip (1.8 Mgate)
 Organic substrate
- Organic substrate
 FR4, 8 layer
 26 mm x 26 mm

Copyright Makoto Nagata, Kobe University -26-

Stack operation and performance

Operation modes:

- Memory write (Logic \rightarrow Mem)
- Memory read (Mem \rightarrow Logic)
- BIST (Fail bit capture)
- PLL clocking/external clocking
- Setting up from I2C
- *All signaling through TSVs
- Maximum operation frequency:

200 MHz (typical), 100 Gbyte/sec

Power consumption (wide I/O bus) : 0.56 mW/Gbps at 1.2 V

Layout view of 3D chip stacks after

physical synthesis.

Demonstrated performance

- ▶ 102.4 GB/s at 1.2 V
- 0.56 mW/Gbps, 0.56 pJ/bit (0.5 mA driving strength)

World-top energy efficiency (2013)

Copyright Makoto Nagata, Kobe University -28-

Mini I/O circuit schematic

Mini I/O circuit consists of a pair of driver & receiver buffers.

The driver has 4 levels of drive strengths for adaptability to TSV properties. Copyright Makoto Nagata, Kobe University -29-

In-place monitoring in 3D chip stack

SSCS ACCEPT

Signal skew in 3D stack

16 vertical channels in 512-bit BANK

- : Redundancy channel TSVs
 : Monitored power supply TSVs
- Redundant channel (32:1) is tapped by on-chip monitor channel
- No degradation found in data rate

Copyright Makoto Nagata, Kobe University -31-

In-place captured eye diagrams

Wider eye-opening for higher driving strength

The dynamic power noise remains less than 20% of signal swing

Copyright Makoto Nagata, Kobe University -32-

Hierarchical ESD protection (1/2)

Copyright Makoto Nagata, Kobe University -33-

Hierarchical ESD protection (2/2)

M. Nagata *et al.*, "CDM Protection of a 3D TSV Memory IC with a 100 GB/s Wide I/O Data Bus," EOS/ESD Symposium, pp. 1-7, Sep. 2014.

CDM ESD stress test

Ref. HANWA HED-C5000R

Copyright Makoto Nagata, Kobe University -35-

CDM stress at pin VDD_M

▶ No damage after positive (+) and negative (-) CDM ESD stress on $V_{\text{DD M}}$

Copyright Makoto Nagata, Kobe University -36-

CDM peak current / leakage current

Global PDN in 3D stacked IC chip

Combination of ESD structures sharing PDNs

Copyright Makoto Nagata, Kobe University -38-

Global PDN from PI/EMC standpoints

Vertical integration of distributed parasitic capacitances

Mitigation of power supply noise and electromagnetic interference

Copyright Makoto Nagata, Kobe University -39-

Electromagnetic interference (EMI)

C-P-S power noise simulation includes packaging-circuits interaction for SI, PI, EMC and ESD characteristics

Importance of multi-level noise analyses increases from viewpoints of highly heterogeneous integration.

In-place diagnosis uses OCM and sheds lights on in-package problems.

Exploration of on-chip SI/PI diagnostic features within advanced packaging structure – 2D (face down), 2.5D (fan out), and even 3D (stacked).

3D IC packaging provides potential advantage.

The densely integrated 3D P/G grids with distributed TSVs – advantageous for EMC and ESD standpoints.

Copyright Makoto Nagata, Kobe University -41-

Key references (by lecturer)

- 1. M. Nagata *et al.*, "Measurements and Analyses of Substrate Noise Waveform in Mixed Signal IC Environment," IEEE Trans. CAD, Vol. 19, No. 6, pp. 671-678, June 2000.
- 2. A. Afzali-Kusha *et al.*, "Substrate Noise Coupling in SoC Design: Modeling, Avoidance, and Validation (Invited)," Proceedings of the IEEE, Vol. 94, No. 12, pp. 2109-2138, Dec. 2006.
- 3. M. Nagata, "On-Chip Measurements Complementary to Design Flow for Integrity in SoCs," DAC 2007, pp. 400-403, June 2007.
- 4. T. Hashida, M. Nagata, "An On-Chip Waveform Capturer and Application to Diagnosis of Power Delivery in SoC Integration," IEEE Journal of Solid-State Circuits, Vol. 46, No. 4, pp. 789-796, Apr. 2011.
- 5. K. Yoshikawa *et al.*, "Measurements and Co-Simulation of On-Chip and On-Board AC Power Noise in Digital Integrated Circuits," EMC Compo 2011, pp. 76-81, Nov. 2011.
- 6. S. Takaya, *et al.*, "A 100GB/s Wide I/O with 4096b TSVs Through an Active Silicon Interposer with In-Place Waveform Capturing," ISSCC 2013, pp. 434-435, Feb. 2013.
- 7. M. Nagata et al., "CDM Protection of a 3D TSV Memory IC with a 100 GB/s Wide I/O Data Bus," EOS/ESD Symposium, pp. 1-7, Sep. 2014.
- 8. M. Nagata, "Noise Simulation in Mixed-Signal SoCs (Invited Tutorial)," ISSCC 2016, Tutorial, T8, Feb. 2016.
- 9. Y. Araga et al., "EMI Performance of Power Delivery Networks in 3D TSV Integration," EMC Europe 2016, pp 428-433, Sep. 2016.
- 10. A. Tsukioka et al., "Simulation Techniques for EMC Compliant Design of Automotive IC Chips and Modules," EMC Europe 2017, pp. 1-5, Sep. 2017.
- 11. Y. Araga *et al.*, "Measurement and Analysis of Power Noise Characteristics for EMI Awareness of Power Delivery Networks in 3-D Through-Silicon Via Integration," IEEE Trans. Components, Packaging and Manufacturing Technology, Vol. 8, No. 2, pp. 277-285, Feb. 2018.
- 12. A. Tsukioka et al., "Interaction of RF DPI with ESD protection Devices in EMS Testing of IC Chips," EMC Europe 2018, pp. 445-450, Aug. 2018.
- 13. H. Sonoda *et al.*, "In-Place Power Noise and Signal Waveform Measurements on LVDS Channels in Fan-Out Multiple IC Chip Packaging," EMC Compo 2019, pp. 1-3, Oct. 2019.
- 14. K. Monta *et al.*, "3-D CMOS Chip Stacking for Security ICs Featuring Backside Buried Metal Power Delivery Networks With Distributed Capacitance," IEEE Trans. Electron Devices, vol. 68, no. 4, pp. 2077-2082, Apr. 2021.

Copyright Makoto Nagata, Kobe University -42-