The Ultimate Software Machine Learning and Intelligence

Pedro Domingos University of Washington

Where Does Knowledge Come From? Evolution Experience

Culture

Where Does Knowledge Come From? Evolution

Experience

Culture

Most of the knowledge in the world in the future is going to be extracted by machines and will reside in machines.

– Yann LeCun, Director of AI Research, Facebook

Traditional Programming

Machine Learning

Traditional Programming

Machine Learning

So How Do Computers Discover New Knowledge?

Fill in gaps in existing knowledge
 Emulate the brain
 Simulate evolution
 Systematically reduce uncertainty
 Notice similarities between old and new

The Five Tribes of Machine Learning

Tribe	Origins	Master Algorithm
Symbolists	Logic, philosophy	Inverse deduction
Connectionists	Neuroscience	Backpropagation
Evolutionaries	Evolutionary biology	Genetic programming
Bayesians	Statistics	Probabilistic inference
Analogizers	Psychology	Kernel machines

Symbolists

Tom MitchellSteve MuggletonRoss Quinlan

Inverse Deduction

Addition Subtraction

Inverse Deduction

Deduction

Induction

Socrates is human+ Humans are mortal

Socrates is human
+ ?

= ?

= Socrates is mortal

Spot the Biologist in this Picture

Connectionists

Yann LeCun

Geoff Hinton

Yoshua Bengio

A Neuron

An Artificial Neuron

Backpropagation

The Google Cat Network

human body neuron (right).

www.kindcell.com

Evolutionaries

John Koza

John Holland

Hod Lipson

Genetic Algorithms

Genetic Programming

Evolving Robots

Bayesians

David Heckerman

Judea Pearl

Michael Jordan

Probabilistic Inference

Probabilistic Inference

Likelihood

How probable is the evidence given that our hypothesis is true?

Prior

How probable was our hypothesis before observing the evidence?

$$P(H \mid e) = \frac{P(e \mid H) P(H)}{P(e)}$$

Posterior

How probable is our hypothesis given the observed evidence? (Not directly computable)

Marginal

How probable is the new evidence under all possible hypotheses? $P(e) = \sum P(e | H_i) P(H_i)$

Spam Filters

Analogizers

Peter Hart

Vladimir Vapnik

Douglas Hofstadter

Nearest Neighbor

Kernel Machines

Recommender Systems

The Big Picture

Tribe	Problem	Solution
Symbolists	Knowledge composition	Inverse deduction
Connectionists	Credit assignment	Backpropagation
Evolutionaries	Structure discovery	Genetic programming
Bayesians	Uncertainty	Probabilistic inference
Analogizers	Similarity	Kernel machines

The Big Picture

Tribe	Problem	Solution
Symbolists	Knowledge composition	Inverse deduction
Connectionists	Credit assignment	Backpropagation
Evolutionaries	Structure discovery	Genetic programming
Bayesians	Uncertainty	Probabilistic inference
Analogizers	Similarity	Kernel machines

But what we really need is a single algorithm that solves all five!

Putting the Pieces Together

Representation

- Probabilistic logic (e.g., Markov logic networks)
- Weighted formulas \rightarrow Distribution over states

Evaluation

- Posterior probability
- User-defined objective function

Optimization

- Formula discovery: Genetic programming
- Weight learning: Backpropagation

Toward a Universal Learner

Much remains to be done . . .We need your ideas

What a Universal Learner Will Enable Home Robots World Wide Brains

Cancer Cures

360° Recommenders

