

Circuit and Signaling Co-Design for Ultra-Wideband Communications

Armin Tajalli Laboratory of Circuits and Systems (LCAS) — University of Utah June 18, 2019 — IEEE Swiss Solid-State Circuit Talk

Outlook

- Data Movement in High Performance Computing
 - General roadmap of HPC
 - Impact of communication
- Energy Efficient Wireline (Copper) Design
 - Effective signaling methods
 - Matched hardware topologies
- Summary

Introduction to LCAS, ECE, University of Utah

Data Movement in High-Performance Computing

Future Applications & Data Flow

Processing Power

[M. Horowitz, et. al.] [karlrupp.net]

Processing Power Physical Limits: Power Density and Heat

Processing Power Multi-Core Processors

- IBM Power9
- 24x cores
- 14 nm FinFET, 17 ML, 8B transistors
- Includes eDRAM and SRAM
- 16 and 25 Gb/s interfaces
- 13 Tb/s off chip BW
- Power consumption (approximately):
 - Core: 57%
 - Clock: 10%
 - Cache: 5%
 - I/O: 15%
 - Leakage: 13%

[IBM, ISSCC'2017]

Processing Power Physical Limits: Yield and Cost

Processing Power Multi-Core MCM Processors

- AMD Zeppelin SoC targeting server market
- FinFET 14 nm
- 4x die multi-chip module (MCM)
- 8x Zen cores per each die
- L3 cache 16MB
- 32x high speed serdes lanes
- Similar monolithic chip (32x cores) would cost 70% more than 4x smaller chips
- Yield of making MCM much better than yield of large size chips (expected size 777 mm²)

[AMD, ISSCC'2018]

Observations Following Trends

Observations Following Trends

Processing Power Physical Limits: Communication

What is ISI?

Overcome ISI Barrier

Observations

Observations

Energy Efficient Link Design

Differential Transceiver

Differential signaling

• Robust, however requires two wires to carry one bit

Differential Signaling

Single ended to differential conversion

Differential Signaling

Properties of differential signaling:

- Robust against crosstalk, supply noise, and common mode noise
- Produces no supply noise SSO
- ISI ratio is ONE

Differential Signaling Encoder

Walsh-Hadamard Matrix

Properties of differential signaling:

- Robust against crosstalk, supply noise, and common mode noise
- Produces no supply noise SSO
- ISI ratio is ONE
- Puts 1b over 2 wires

Differential Signaling Constellation

Comparison levels are orthogonal to CM

Differential Signaling Decoder

Decoder

+1	+1
+1	-1

VCM + D VCM - D

Walsh-Hadamard Matrix

Differential Signaling Reduce Redundancy

H: Walsh-Hadamard Matrix

Properties of differential signaling:

- Robust against crosstalk, supply noise, and common mode noise
- Produces no supply noise SSO
- ISI ratio is ONE
- Puts N bits over N+1 wires

Circuit Topology Linear Analog Encoder/Decoder

Observations:

- A linear (analog) decoder can convert a four level signal back to a binary signal in front of slicer
- ISI sensitivity improves by a factor a factor of 3x
- Analog linear combiner can be found for Walsh-Hadamard based transformations, but not for PAM_n, n>2.

Example

Example:

- Take 5 bits and put them over 6 wires
- ISI sensitivity stays as good as differential signaling (ISIRatio = 1)
- Improves spectrum efficiency by a factor of close to 2x.

$$CNRZ = \begin{bmatrix} +3 & +3 & +3 & +3 & +3 & +3 \\ -3 & -3 & -3 & +3 & +3 & +3 \\ +2 & +2 & -4 & 0 & 0 & 0 \\ +3 & -3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -4 & +2 & +2 \\ 0 & 0 & 0 & 0 & -3 & +3 \end{bmatrix}$$

Circuit Topology Linear Analog Encoder

Example:

- Take 5 bits and put them over 6 wires
- Does not add any extra latency
- Simple voltage mode or current mode driver can be used.

Circuit Topology Linear Analog Decoder

Example:

- Take 6 wires as its input and produces a binary output
- Does not add any extra latency

Evolution of Signaling Schemes

Single Wire PAM2 SES

• PAM2 (SES or DS) are part of a larger family of signaling method that exhibit the same ISI sensitivity (based on definition: ISI Ratio = 1).

Evolution of Signaling Schemes

- ENRZ: Ensemble-NRZ
- CNRZ: Correlated-NRZ

Correlated NRZ Lane

High Density Lane Architecture

High Density Lane Clocking

- Forwarded clock to track jitter
- Rx PLL BW can be as high as 1.5 GHz
- Clock/data alignment algorithm is used to track the best sampling point.

High Density Lane Rx PLL

- Type-II PLL is used
- Feedback delay is minimized using PDXI element
- Jitter generation: 220 fs-rms

High Density Lane Rx PLL

- PDXI: phase detector, phase interpolator, and charge-pump
- Decomposed XOR based architecture is used to reduce cost.

High Density Lane Rx Front-End

High Density Lane Chip Photo

- 500 Gb/s Transceiver
- FinFET 16 nm
- Each Tx/Rx includes 24 data wires and 2 clock wires

High Density Lane Channel

Rx Τх Тχ Rx Тх Rx Тх Rx Rx Тх Тх Rx Rx T x Rx Rx Τх Тх Rx * * * * *

- Link performance has been measured for different channel lengths (5 mm unto 30 mm)
- Channel loss can be as high as 6 dB

High Density Lane Experimental Data

- Each Chord includes 6 wires, carrying 5 bits
- All 5 bits exhibit binary eye diagrams with the same height.

42 Mead Course — Advanced Signaling for Communication Over Copper— March 28, 2019 — Sana Oraz — Advanced Signaling for Communication Over Copper— March 28, 2019 — Sana Oraz — Advanced Signaling for Communication Over Copper— March 28, 2019 — Sana Oraz — Advanced Signaling for Communication Over Copper— March 28, 2019 — Sana Oraz — Advanced Signaling for Communication Over Copper— March 28, 2019 — Sana Oraz — Advanced Signaling for Communication Over Copper— March 28, 2019 — Sana Oraz — Advanced Signaling for Communication Over Copper— March 28, 2019 — Sana Oraz — Advanced Signaling for Communication Over Copper— March 28, 2019 — Sana Oraz — Advanced Signaling for Communication Over Copper— March 28, 2019 — Sana Oraz — Advanced Signaling for Communication Over Copper— March 28, 2019 — Sana Oraz — Advanced Signaling for Communication Over Copper— March 28, 2019 — Sana Oraz — Advanced Signaling for Communication Over Copper— March 28, 2019 — Sana Oraz

High Density Lane Performance Summary

Reference		[4]	[3]	[2]	[This Work]
Signaling		SES (*1)	SES	CNRZ (*2)	CNRZ-EE (*3)
Data rate/pin	[Gb/s/w]	20	25	20.83	20.83
Channel Loss	[dB]	1	8.5	3	6
CMOS Technology	[nm]	28	16	28	16
BER	[b/b]	1E-12	1E-15	1E-15	1E-15
Energy Consumption	[pJ/bit]	0.54	1.17	0.94	1.02
Throughput Rx+Tx	[Gb/s]	160 (*4)	200	250	1000
Throughput Die Edge Density	[Gb/s/mm]	233.2 (*4)	291.5	166.3	416.7
(*1) SES: Single Ended Signali	ng	(*3) CNRZ	-EE: Equal	eye CNRZ	

(*2) CNRZ: Correlated NRZ

(*4) Assumed the same bump map as [3]

[2] A. Shokrollahi, et al., ISSCC'2016.[3] J. M. Wilson, et al., ISSCC'2018.

[4] J. Poulton, JSSC'2013.

High Density Lane Comparison: Chord vs. PAM4

Conclusion

- High performance and high speed serial links are key elements in modern distributed processing systems. In such systems energy efficiency, pin-efficiency, and more precisely data density are critically important.
- Virtually all multi-core and multi-chip systems are enabled by innovative short distance data communication solutions with very high bandwidth (> Tb/s) at low energy cost (< 1 pJ/b). Applications such as Machine learning highly depend on such links.
- There are plenty of **opportunities** for improving the data BW, speed and energy efficiency, with innovative circuit and system level solutions.
- Unlike in wireless communication systems, the potentials of using different coding and signaling methods have not been accurately investigated in wire-line systems.

• Acknowledgement: Thanks to Kandou Bus for supporting this work and providing information.

Summary

Circuit Design

Solid State Devices					
Lamp, BJT	MOS/FinFET	GAA			

LCAS Employs Advance Signal Processing, Communications, and Coding For Extreme High Performance & Energy Efficient Circuit Design

> Electrical & Computer Engineering Department , University Of Utah Laboratory of Integrated Circuits and Systems (LCAS)

