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Artificial Intelligence (AI) Applications

http://www.asimovinstitute.org/neural-network-zoo/
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Deep neural network (DNN) topologiesAI today is widely used in computer vision (i.e. image classification), 
natural language processing (i.e. language translation), etc. 



Typical DNN Models 
for Image Classification
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For image classification, 
model size tens of MB

For language translation, 
model size can be up to 
10 GB 

→ Require 10MB to 10 
GB on-chip memories

→ Thus requires multi-bit 
and 3D integration
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Training: to learn weights iteratively with back-propagation of errors from the output labeled 
data→ “write” intensive to synaptic weight memories 
Inference: after training is done, feedforward propagation for prediction only→→ “read” 
intensive to synaptic weight memories 
Most intensive computation: vector-matrix-multiplication (to be accelerated by hardware)

weightsfeature maps

Low level features High level features

labels

Errors=|labels-predictions|



GPU FPGA TPU

Analog CMOS (or eNVMs)
~ 10-100 TOPS/W

Conventional computing platforms 
~ 0.1 TOPS/W

Digital CMOS ASICs
~ 1-10 TOPS/W

Compute-in-memory (CIM)

Hardware Accelerators for AI

Floating-point Fixed-point Low-precision→ accuracy? 

◼ GPU still dominates the training in cloud, FPGA is good for inference for fast prototyping
◼ TPU (or similar digital ASIC) is ramping up in cloud as well as edge

◼ To further improve energy efficiency (TOPS/W), analog CIM (possibly with eNVMs) is 
promising especially in the edge inference where the model is pre-trained. 

◼ CIM chip could also support incremental learning with continuous (possibly unlabeled) 
new data (e.g. with reinforcement learning) when deployed to the field.



CIM Basics: Mixed-Signal Compute

7

fG11IN[0]

IN[1]

IN[2]

IN[N]

W11

Layer i Layer i+1
Forward

 mapped to 
memory

BL

WL

SL

SL/BL header

C
trl

MUX

W11 W21 W31 Wm1

W12

W13

W1n Wmn

ADC
W

L 
D

ri
ve

r

Shift-add

or

WL

BLBLB

QB Q

6T SRAM

1T1R

IN[0]

IN[1]

IN[N] Isum= i

i

i

Wmn

8-bit weight may need 8 SRAM cells, and shift-add 
8-bit weight may need 2 1T1R cells (if each cell is 4b/cell), and shift-add



Digital vs. Near-Memory vs. CIM Accelerator

TPU-like digital accelerator: PE only has MAC units such as multiplier and adders, while 
the data (both activation and weights) are accessed by shared global buffer (e.g. SRAM 
cache) → Single row access, slow and inefficient 

Weights are stored in memory array, while the activations are loaded in as input to WLs 
Near-memory compute: Row by row access with digital adders at periphery 
In-memory compute (CIM): Parallel access and ADC for partial sum quantization 
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TPU-like digital 
accelerator

Near-memory-compute accelerator
(row-by-row)

In-memory-compute accelerator
(parallel)
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Electronic Synapses and Neurons

• Inspirations from biology and 
neuroscience

• Mathematical formulation in 
machine learning
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Abstractions for device engineers:
Synapses: local memories that carry weights
→ Multi-bit memories
1) Two-terminal resistor
2) Three-terminal transistor
(biased at linear region)

Neurons: simple thresholding compute units
→ Threshold switches
1) Abrupt switching in I-V
2) Returns to off-state at zero voltage (not 

memory)

NeuronWeighted sum



Landscape of Analog Multi-bit Memories 
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STT-MRAM/SOT-MRAM can be used as binary synapse in principle, electrochemical random access memory 
(ECRAM) is premature. Therefore, we will not discuss about these candidates in this short course. 
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Partial switching in these materials leads to analog multi-bit memories as synaptic weights
RRAM and PCM are more current driven, and FeFET is electric field driven (less energy!)



Key Device Properties for Training 
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• Symmetry and linearity in weight update

• Asymmetry (w/nonlinearity) is the primary cause of the in-situ training 
accuracy degradation.

• Algorithmic techniques such as momentum [1] has been introduced to 
compensate for the accuracy loss. 

[1] S. Huang, et al. DATE 2020



Key Device Properties for Inference 
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Four possible data drift schemes

CIFAR-10
Device effects that affect reliability 
• Relaxation (after programming) 
• Read stress or disturb
• Retention at high temperature
• Intermediate state stability is the key concern  

After training, the weights should be stable over time for inference (read only)

X. Peng, et al. IEDM 2019



Multi-bit RRAM
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Ultimate Goal: Engineer for multiple weak 
filaments instead of a single strong filament

Varying-pulse amplitude scheme in the gradual reset regime to 
converge the target conductance into arbitrary analog levels 
within the dynamic range.
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Multi-bit PCM
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IBM’s confined PCM
Metallic liner

Only gradual SET 
2T2R differential cell

(for bidirectional       
tuning) 

Retention: drift is minimized Endurance 1E11
W. Kim, et al. VLSI 2019 

1000 levels ~ 10-bit



FeFET
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FeFET (History Effect)
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Experiments on GF’s 
28nm FeFET



FeFET (History Effect Physics and Mitigation)
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Multi-domains have variations in coercive field (Eco), S2 state has 
more harder domains in large loop, thus needs higher field (E3) 
than (E1) to flip from S2 to S1 compared to minor loop



Oscillation Neuron based on Threshold Switch 
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Goal: Replace complex integrate-and-fire neuron or ADC with simple threshold switch (e.g. NbO2)
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RRAM Test Vehicle for Multilevel Characterization
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Decap RRAM array 
(256x256)

Decoder + 
Level Shifter

• Winbond HfOx RRAM at 90nm (C. Ho, et al. IEDM 2017)
• RRAM is integrated between M1 and M2
• Originally developed for binary cell operation, now explored for multilevel operations
• Variability and reliability are characterized on 256x256 test vehicle with CMOS decoder
• For MLC storage, tail-to-tail gap is important; for compute-in-memory, the small deviation around center 

of each state is important. Therefore, the requirement is more stringent for analog synapse

(Gatech)
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Write-Verify Protocol to Tighten RRAM States 
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3-bit Weight Programming on RRAM Array
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Y. Luo, et al., TED 2020
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• Write-verify loop number N



Multilevel RRAM Stability (for Inference)
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High temperature baking Avg. conductance tends to decrease

Sigma conductance tends to increase

W. Shim, et al. IRPS 2020 and TED 2020.
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Algorithm-level mitigation:
• Training with regularization to reduce the 

weights in intermediate states
• Retraining with batch norm parameters



Outline

• Background and Motivation 

• Synaptic Devices: State-of-the-Art

• Variability and Reliability Characterization at Array-level

• Benchmark of Synaptic Devices for Inference and Training

• Chip-level Demonstrations: State-of-the-art
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DNN+NeuroSim Framework Overview
▪ Integration of NeuroSim with Pytorch and Tensorflow

▪ An end-to-end framework to benchmark configurable CIM-based hardware accelerators 

▪ NeuroSim Core
▪ Built upon a hierarchy of chip/tile/PE/subarray with all the necessary peripheral circuitry

▪ Technology parameters calibrated with PTM model from 130nm to 7nm

▪ Reports energy efficiency, throughput, area and memory utilization

▪ Python Wrapper
▪ Defines arbitrary deep neural network and reports inference/training accuracy

▪ Introduced device retention model and ADC quantization effects for inference

▪ Introduced device nonlinearity/asymmetry and variation effects for training

• DNN+NeuroSim V1.3 for inference
▪ Github: https://github.com/neurosim/DNN_NeuroSim_V1.3

• DNN+NeuroSim V2.1 for training 
▪ Github: https://github.com/neurosim/DNN_NeuroSim_V2.1

▪ Community: more than 300 users including Intel, TSMC, Samsung, and SK Hynix
26

https://github.com/neurosim/DNN_NeuroSim_V1.2
https://github.com/neurosim/DNN_NeuroSim_V2.0


DNN+NeuroSim Key Features  

27

X. Peng, et al.
IEDM 2019



DNN+NeuroSim Methodologies

28

Algorithm accuracy estimation based on WAGE method
• Hardware-aware quantization for weight, activation, gradient, error, as well as partial sum quantization 

based on ADC precision.
• Support various network models for CIFAR-10/-100 and ImageNet 
Hardware metrics estimation based on analytic models that are calibrated with SPICE at module-level.
• Analog modules (e.g. ADC) calibrated with Cadence custom simulation;
• Digital modules estimated with standard cell area and logic gate delay/dynamic power/leakage power;
• Interconnect modules (e.g. H-tree) estimated with parasitic RC delay and power;

Sub-array level



Analysis on ADC Precision

▪ Inference Accuracy of VGG-8 (8-bit weight)           
on CIFAR-10

▪ Sweep device precision & synaptic array size

▪ Sweep ADC precision (non-linear quantization)

29X. Peng, et al. IEDM 2019 



• Emerging NVMs outperform SRAM at the same tech node (e.g. at 22nm)
• Increasing on-state resistance (Ron) to >100kΩ is critical to improve the energy efficiency (TOPS/W)
• FeFET is promising due to high Ron that is modulated by the gate voltage bias
• 7nm SRAM (if compute-in-memory) still achieves the best compute efficiency with area scaling advantage 
• Compared to IEDM 2019 results, here we added the level shifter module for NVMs that need high write voltage

Benchmark for Compute-in-Memory (Inference)

X. Peng, et al. IEDM 2019 30
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Hybrid NVM+Capacitor for Training
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Cap Leakage and Endurance Requirement
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• 10fA or below is needed for maintaining the retention 
time above ms and ensure no training accuracy loss

• Oxide channel transistor may be preferred with low 
leakage and large drive voltage to program NVM. 

Dataset
Number of write

HPS Pure NVM

CIFAR-10 750 37,500

ImageNet 20,000 6,250,000

Transfer interval = 10k images as example

For HPS, # write = # images per epoch * # epochs / 
transfer interval
CIFAR-10: 50k * 150 epoch / 10k = 750
ImageNet: 1M * 200 epoch / 10k = 20, 000

For pure NVM, # write = # images per epoch * # 
epochs / batch size
CIFAR-10: 50k * 150 epoch / 200 = 37,500
ImageNet: 1M * 200 epoch / 32 = 6,250,000



Outline

• Background and Motivation 

• Synaptic Devices: State-of-the-Art

• Variability and Reliability Characterization at Array-level

• Benchmark of Synaptic Devices for Inference and Training

• Chip-level Demonstrations: State-of-the-art
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State-of-the-Art Industrial Emerging NVMs
• A survey of the industrial platforms (developed for embedded 

memories, not necessarily tailored for synaptic weights)

34

TSMC 40nm RRAM (ISSCC 18) Intel 22nm RRAM (ISSCC 19) 

RRAM:

PCM:

FeFET:

STT-MRAM:

GF 28nm and 22nm FeFET (IEDM 16 & 17)

TSMC 40nm PCM (IEDM 18) TSMC 22nm STT (ISSCC 20)

Intel 22nm STT (ISSCC 19)

Samsung 28nm STT (IEDM 18)
GF 22nm STT (IEDM 19)



Summary of RRAM-based CIM Macros
ISSCC’ 18 

NTHU
ISSCC’ 19 

NTHU
ISSCC’ 20 

NTHU
TED’ 20
ASU/GT

SSCL’ 20 
ASU/GT

Technology (nm) 65 55 22 90 90

No. of bit per cell 1 1 1 1 2

Subarray size 512×256 256×512 512×512 128×64 128×64

Capacity 1Mb 1Mb 2Mb 8Kb 8Kb

Precision(I,W,O) 1,1,3 2,3,4 4,4,11 1,1,3 1,2,1

Column sensing 3b ADC 4b ADC 6b ADC 3b ADC 1b SA

# of rows turned on 9 9 16 64 64

Supported algorithm CNN CNN CNN CNN CNN

Energy efficiency 0.6 TOPS/W 2.05 TOPS/W 3.79 TOPS/W 0.38 TOPS/W 1.61 TOPS/W

Accuracy 98% (MNIST) 88.5% (CIFAR10) 90.18% (CIFAR10) 83.5% (CIFAR10) 87.1% (CIFAR10)

Note: TOPS/W is normalized to 8bit by 8 bit MAC (1b MAC = 2 ops)
TOSP/W is less than NeuroSim prediction, due to 1) older tech node, 2) partially # of rows turned-on 
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Secure-RRAM CIM Prototype Chip (TSMC 40nm)

36

New Features

Adaptive input sparsity control

Reconfigurable weight precision

Integrated digital compute units

Input-aware on-chip ADC reference

On-chip write-verify controller

Input encoding for embedded security
W. Li, et al. CICC 2021 and ESSCIRC 2021

11/12/2021

2nd-gen RRAM CIM chip 
taped-out (May 2021)

Technology TSMC 40nm w/ RRAM

Array size 128 x 128b

Weight precision 

(bits)
1, 2, 4, or 8

Rows turned on 

simultaneously
7

Operating voltage 0.9V

Clock frequency 100MHz

0% Input Sparsity 95% Input Sparsity

Compute efficiency

(GOPS/mm2)

36.01 (1x1b MAC)

4.50 (1x8b MAC)

100.80 (1x1b MAC)

12.60 (1x8b MAC)

Energy efficiency

(TOPS/W)

8.48 (1x1b MAC)

1.06 (1x8b MAC)

56.10 (1x1b MAC)

7.01 (1x8b MAC)

Performance on 

VGG-8

Sparsity Control

Enabled

Sparsity Control

Disabled

CIFAR-10 accuracy 90.4% 91.9%

Compute efficiency

(GOPS/mm2)
83.50 (1x1b MAC) 36.01 (1x1b MAC)

Energy efficiency

(TOPS/W)
36.39 (1x1b MAC) 8.48 (1x1b MAC)



Challenges for RRAM-CIM Chip Design

• Low Ron → Large column current → Analog MUX at 
end of the column size up → Poor area efficiency

• High Vw → Large transistor needed for 1T1R cell →
Bit cell size may be >30F2

• High Vw → Significant area on the level shifters

37

Control Circuits

Level Shifters MUX

RRAM Array

ADCs

• ADC area/power bottleneck → Multiple 
columns share one ADC → Time 
multiplexing required → Reduced 
throughput

• Process variation → ADC offset → Inaccurate 
partial sum computation → Inference 
accuracy degradation 

S. Yu, et al. CICC 2020

Process variation



Summary and Outlook
• NVM (RRAM, PCM, and FeFET) can be tuned to multilevel (possibly by iterative write-

verify), and the read-intensive inference is most suitable application with advantages 
over SRAM (e.g. low leakage and non-volatility) for edge intelligence. 

• FeFET is the most promising candidate with features like improved on-state resistance 
(>100kΩ) with gate biasing, and low write energy (~fJ/bit) due to field-driven 
switching, fast read/write speed (~10ns), and 2-5 bit/cell potential. Need to build 
array-level test vehicles (e.g. GF’ 28nm) for characterizing statistics. 

• NVM based inference engine still faces challenges such as high write voltage and low 
on-state resistance, ADC overhead, intermediate state stability, process variation 
caused inference accuracy degradation, etc.

• DNN+NeuroSim is an integrated framework for benchmarking different CIM 
technologies that is open source to the research community. 
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