55nm DDC Subthreshold MCU 2.5µA/MHz

Talk IEEE - Switzerland – SSCS ETHZ, 26/06/2019 Marc PONS SOLÉ

CSEM is the «Centre Suisse d'Electronique et Microtechnique»

2

CSem

Our mission is to develop and transfer microtechnologies to industry

:: CSeM

Disruptive developments – a story of "firsts"

:: CSeM

And since 2012?

CSem

Outline

- Ultra low power challenge
- Low voltage approach
- 55nm DDC technology
- Body bias compensation

6

- MCU system
- Measurement results
- Conclusion

:: CSem

Technology has made a long way!

From Kilby's first circuit in 1958...

7

...following Moore's law...

" CSeM

But the path is full of traps...

Temperature variations

$$V_{th}(T) = V_{th}(T_0) - k(T - T_0)$$
$$\mu(T) = \mu(T_0) \left(\frac{T_0}{T}\right)^m$$

Voltage variations

8

:: CSEM

PVT variations to be considered for design's manufacturability and yield

9

:: CSeM

Then come ultra low power constraints!

10)

Constrained power budget Growing memory needs Connectivity Miniaturization

CSem

And subthreshold design comes to save the day...

$$\mathbf{E} = \boldsymbol{\alpha} \cdot \boldsymbol{C} \cdot \boldsymbol{V}_{dd}^2 + \frac{\boldsymbol{I}_{off} \cdot \boldsymbol{V}_{dd}}{f}$$

Minimum energy point obtained when reducing the voltage

But voltage scaling is challenging...

Voltage scaling adds complexity to technology scaling!

12)

Technology scaling $\rightarrow \rightarrow$

" CSem

The magic cycle!

Subthreshold

" CSem

techniques

Mature technology

- PVT under control
- Minimum energy point

Standard technology

- PVT under control
- Energy constraints

Voltage

scaling

Standard techniques

Challenging technology

• PVT sensitivity

Challenging technologyPVT sensitivity

CSEM's has a long history on subthreshold design

design

From Eric Vittoz first MOS meaurements in 1967...

...through memory and standard cell

...to nowadays subthreshold MCU

14

CSEM

Subthreshold chips in the last years

Willow TSMC 180nm 0.4V

" CSem

Allalin ALP 180nm 0.6V

Manny ALP 180nm 0.6V

Breithorn TSMC 65nm 0.3V

Calanda DDC 55nm 0.5V 15)

55nm DDC CMOS

Strong body factor of 375 mV/V (FDSOI: 80mV/V)

Allows to scale V_{th} from 250mV to 850mV

Undoped depleted channel that does not suffer from random dopant fluctuations

DDC body bias control

 $f \approx \frac{I_{ON}}{CV}$

Almost same frequency (17) at 0.5V compared to 1V with DDC !

Huge frequency and leakage scaling capability Frequency compensation principle

ADVbbFS stands for Adaptive Dynamic Body Bias Voltage Frequency Scaling

CSem

PVT spread

CSem

19

Standard cells frequency compensation

6T SRAM frequency compensation

Static noise margin in the whole bias range

Well currents are far below Ion currents

System block diagram

32 bit Microcontroller + 64kB SRAM + Analog-Assisted Adaptive Body Bias PVT Compensation

CSem

Measurement conditions

Process: 55nm DDC SS, TT, FF Voltage: 0.5 V ±10% Temperature: -40°C to 85°C Frequency (mode): 0.31 to 10 MHz

32 bit RISC Core measurement

	Leakage			
Frequency	FF 0.55V 85°C	TT 0.5V 25°C	SS 0.45V -40°C	Dynamic
0.31 MHz	0.25 μΑ	54 nA	14 nA	2.56 μW/MHz
10 MHz	4.08 μΑ	1.19 μΑ	0.24 μΑ	
	'			25

Frequency	Frequency variation over PVT
0.31 MHz	±21%
10 MHz	± 6%

In typical conditions

- > 30x frequency scaling
- > 20x leakage scaling

Variation increases in sub-threshold operation (use of reverse bias for low frequency)

CSem

64kB SRAM measurements

Dynamic 2.5 μ W/MHz

In typical conditions

- > 60x frequency scaling
- 3.13 nW/kB retention

Conclusion

 Combination of DDC 55 nm CMOS with a novel analog-assisted current-based adaptive body bias for low voltage

- 32 bit Microcontroller system with 64kB 6T SRAM at 0.5V
- 30x frequency scaling, 20x leakage scaling at fixed voltage
- Down to ±6 % frequency variation over PVT
- 32 bit RISC 2.56 µW/MHz, 27 nW leakage
- 6T SRAM 2.5 μ W/MHz, 3.13 nW/kB retention

Deeply-Depleted Channel (DDC) ecosystem

[ISLPED 2019-accepted] Energy-Autonomous MCU Operating in sub-VT Regime with Tightly-Integrated Energy-Harvester

[CICC 2019] A 0.5V 2.5 µW/MHz Microcontroller with Analog-Assisted Adaptive Body Bias PVT Compensation with 3.13 nW/kB SRAM Retention in 55 nm Deeply-Depleted Channel CMOS

[ICSEE 2018] PVT Compensation and Performance Scaling with Adaptive Body Bias in Fujitsu 55nm DDC

[S3S 2017] PVT Compensation in Mie Fujitsu 55 nm DDC: A Standard-Cell Library Based Comparison

[S3S 2017] SNM Analytical Approach to Robust Subthreshold SRAM Operation based on the 55nm DDC Technology

[ESSCIRC 2016] Sub-Threshold Latch-Based icyflex2 32-bit Processor with Wide Supply Range Operation

[S3S 2015] A 10 kgates sub-threshold stream cipher in 180 nm with 6.1 kHz frequency 70 nA total current and 46 nA leakage at 0.33 V

[S3S 2015] A 1kb single-side read 6T sub-threshold SRAM in 180 nm with 530 Hz frequency 3.1 nA total current and 2.4 nA leakage at 0.27 V

[ISVLSI 2015] Sub-Threshold Design and Architectural Choices

[PATMOS 2013] Ultra Low-Power Standard Cell Design using Planar Bulk CMOS in Subthreshold Operation

" csem

mps@csem.ch

