

Keeping Your Phone Working When The Lights Go Out

Murray MacDonald, P.Eng., LSMIEEE

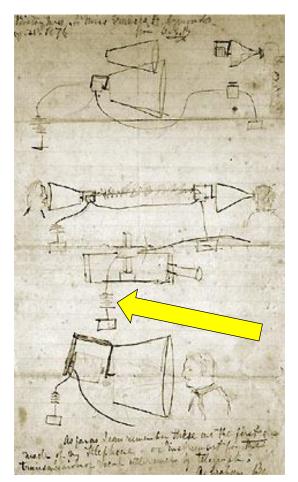
December 11, 2021

Murray MacDonald

- B.Sc. (EE) & M.Sc. (EE) Queen's University
- 40 years in design, develop, and management with telecommunication power suppliers

'keeping your phone working when the lights go out"

- Registered Professional Engineer in Ontario
- Presently an IEEE Life Senior Member & retired (sort of)
- Active IEEE volunteer, especially STEM Outreach

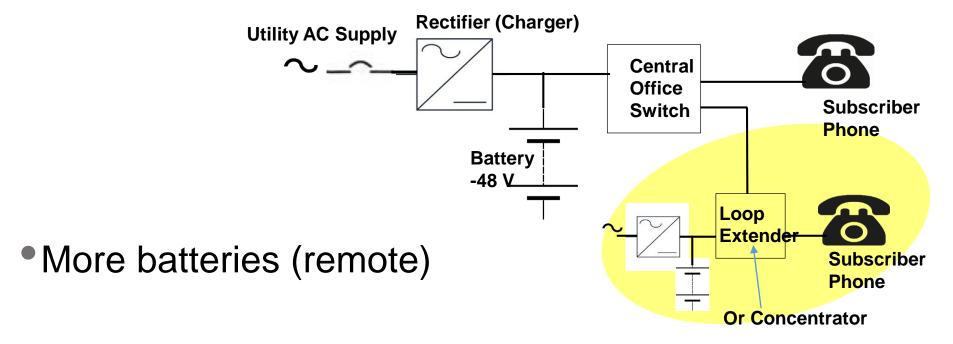

History of Telecom Power - Powering Bell's Phone

 The original phone was battery powered

 Battery was local (at the phone) and switching was manual – using jacks

http://www.powerqualityworld.com

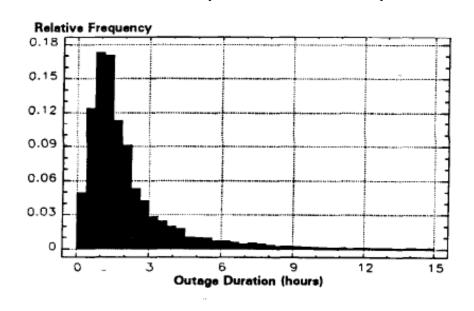
History of Telecom Power - Centralization



- As switching was automated, the "offices" were powered by battery plants (centralized)
- As cities were electrified, the battery plants were charged from AC.
- For reliability (life line services) power for the local phone was supplied from the central office.
- Powering from central office had limited reach (10-15 miles [16-24 km]) and capacity (single phone)
- -48V standardized as compromise between reach and safety (some jurisdictions used 60V until 1970s)

History of Telecom Power -Decentralization

- Limitations on reach to customer loop extenders
- Growth in customer base concentrators


Utility AC Supply Outages & Availability

IEEE Canada

TELSTRA (Australian) Data from 1994

99.99
99.97
99.96
0 4 8 12 16 20
Outage Duration (hours)

Figure 5. Relative frequency of accidental AC power outages.

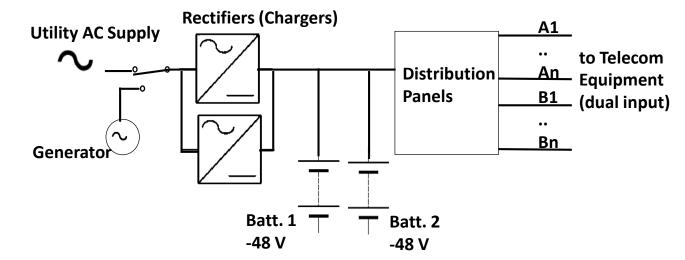
Figure 2. AC Availability

Source – Battery Reserve Sizing for FITL..., J. Hawkins, INTELEC

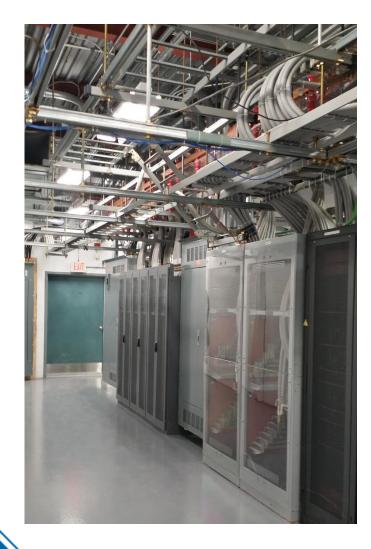
Reliability - Availability

- For a telco operator, their focus is on availability – expressed in %
- A perfect system is available 100% of the time
- Outages are reflected as Unavailability = 100% - Availability

AVAILABILITY (%)	# of 9s	OUTAGE (/year)
99.9	3	8 hr. 50 min.
99.97	3 1/2	2 hr. 37 min.
99.99	4	53 min.
99.999	5	5.3 min.
99.9999	6	0.5 min
99.99999	7	3 sec.

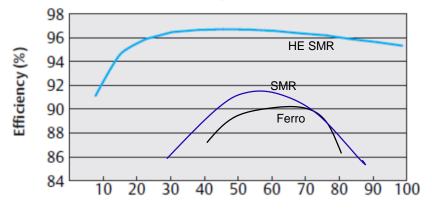

- Availability is often referred to by the # of 9s
- Telco's look to have 5 9s or 6 9s, even 7 9s in very critical locations
- Achieving this depends heavily on repair time (MTTR) and maintainability

Modern DC Power Systems


- Modern DC power system consists of:
 - utility supply
 - transfer switch
 - generator(s)
 - rectifiers/chargers/PCU
 - batteries
 - distribution (protection)
 - interconnections between these

Modern DC Power System

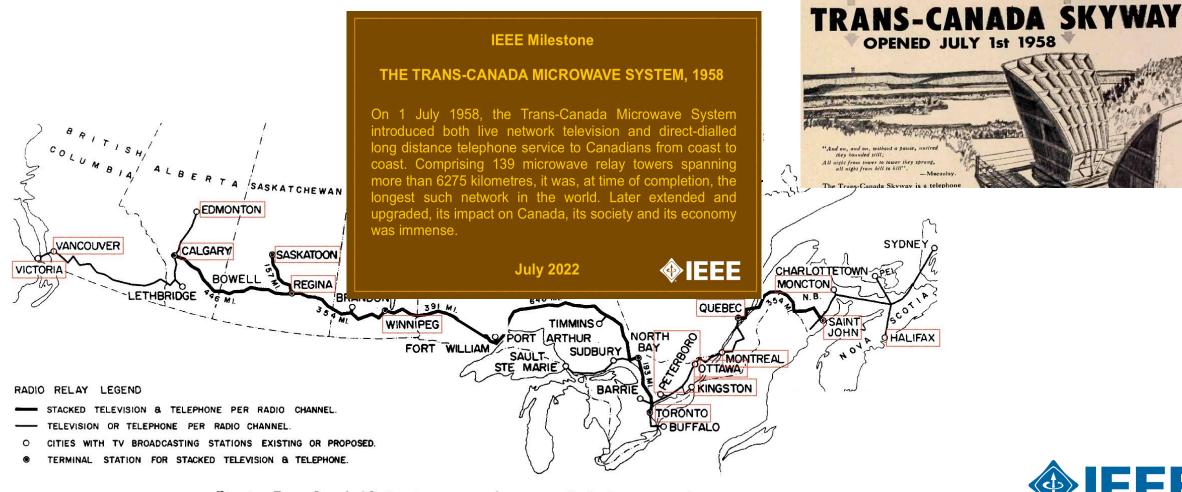
Rectifiers - Technology Comparison

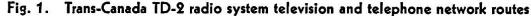

IEEE Canada

- Comparison of various rectifier technologies
- impacted by changes in components, manufacturing processes, and locations
- some impact by design choices

Technology	Vintage	Size (dm³ /kW)	Wt (kg /kW)	Eff. %	PF	Cost (\$ /kW)
Mag Amp	' 50	55	40	83	.70	\$2000
SCR	' 60	55	36	85	.80	\$2000
Ferro	'70	55	40	88	.93	\$2000
SMR (gen1)	'80	12	8	90	.85	\$1000
SMR-PFC	' 90	4.8	6	92	.99	\$400
HE SMR	'10	2.4	4	96	.99	\$240

Efficiency Curve




Estimates by M.MacDonald

Load (% of rated load)

New Milestone in Process

Questions?

murraymacdonald@ieee.org

