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The Map is not the Territory

Alfred Korzibsky
1879-1950

0 Developed field of “general semantics”

0 Thought deeply about connection between human
knowledge and language, and the observed reality
versus the observer in defining human knowledge

0 Argued that no one can have direct access to reality
— knowledge is filtered through the brain's
responses to reality

0 Best known dictum: "The map is not the territory"
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The Map is not the Territory

Science and Sanity (1933)

Greek, pre-scientific (idealism) Alfred Korzibsky
Observer-centric; observed reality does not matter 1879-1950
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Start of Personal Journey

“The purpose [..] is to discuss a possible mechanism by which [..] genes [..] may determine the anatomical structure of the ] ]
resulting organism. The theory [..] suggests that [..] well-known physical laws are sufficient to account for many of the facts.”  Sif Alan Turing
Turing, AM. (1952) Chemical basis of morphogenesis. Phil Trans Royal Soc London. Series B, Biol Sciences 237(641):37-72. 1912-1954

LN

égal\ How does the form of matter determine function?
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Societal & Health Problems = Outstanding Scientific
Challenges = Fundamental Al Advances

Fire:
InCIp[e

“It is the mark of an instructed mind to rest satisfied with the degree of precision which the nature of the subjects permits and
not seek an exactness where only an approximation of the truth is possible.” Aristotle 319 BC
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[ Build or Learn Ocys

Function-encoding Representation of Form
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Personal Journey

No to very little data — explicit knowledge
2002-2016
Classic Al: stochastic search- optimization (geometry,

kinematics, inverse kinematics, motion planning)
-- molecular structural biology

Some data —explicit and tacit knowledge
2010-
Hybrid Models (data-driven Al, knowledge-guided
shallow ML, shallow ML + Al)

-- sequence/structural biology, social media user
modeling, industrial monitoring, urban planning

Lots of data — Al romance w/ tacit knowledge
2018-

Deep Learning, NLP, Deep generative models

-- sequence/structural biology, mental health,

traffic forecasting, Al for Policy
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Personal Journey

No to very little data — explicit knowledge
2002-2016
Classic Al: stochastic search- optimization (geometry,

kinematics, inverse kinematics, motion planning)
-- molecular structural biology
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Chapter | — Al for Dynamics of Complex Systems
Explicit Knowledge at Full Force

On the Origin
of Species

Charles Darwin

1869

’;, & Discovery of DNA

_Friedrich Miesche

7 '.: structure of
i DNA

V_Vatson & Cric

1957 (6A) & 1959 (2A))

Perutz&\ (Golden Age o !
Kendrew O C++ problems
e s e Crystal O Hybridization of sub-
structure of hemoglobin domains, domains,

and disciplines J

2004-2016

Thermodynamic
Hypothesis, 1950-1962

Protein Folding and tID

Anfinsen Y,

N\prl

MhIL itt

AhW hl

\Karglus McCammon LeV|tt Warshel, Schera

~

M MD simulation of
protein structure
and dynamics
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Robot Motions and Protein Motions:
Leverage Analogies

)4 8

ROBOITICA

(<wm

protein: continuous energy surface articulated robot: 0/1 obstacles
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Prior to the Data Revolution
[It was the best of times. It was the worst of times]

Modeling of equilibrium flexibility
of specific, highly-mobile segments

Modeling of equilibrium flexibility of entire protein chain

Goal: Partial or full characterization of protein flexibility by combining fast molecular kinematics (inspired
from robotics/geometry of articulated objects) with physics-based treatments (molecular mechanics)

Context: Rich but incomplete knowledge from computer science, biophysics, chemistry, statistical
mechanics =2 ripe for ingenuity, model/algorithmic design and novelty
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Tree-based and Roadmap-based Algorithms
Inspired from Robot Motion Planning

ﬁ? ;T; Polypeptide chain Articulated linkage
“')4;%? o’ S, o
v
3 @ Re
Tree-based Roadmap-based
Grow tree in state space Build roadmap in state space
(local view of state space) (non-local view of state space)
’ Y
| PST—e | - Ps—e
—— @ r ~
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Adaptive Tree-based Search
at learns & remempbers where it has been)

Key idea:

Smart use of discretizations/structurization of
search space and energy/cost surface to
adaptively steer search tree towards constraint-
satisfying regions

In structure modeling:

Low-energy AND geometrically-diverse
conformations
—> projection layers over energy
surface and conformation space

Pro' : Moll d Shehu. Elucidating the E ble of F jonally-rel
. |ecti olloy an ehu. Elucidating the Ensemble of Functionally-relevant
gﬁg;ﬁm&gﬂ?qbdor on ’-Ol)'e Transitions in Protein Systems with a Robotics-inspired Method.

| Y BMC Structural Biology J 13(Suppl1):58, 2013.
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Roadmap-based Algorithms for Hundred-
Dimensional (Biomolecular) State Spaces

Roadmap to obtain ensemble of 1 Markov State Models (MSMs) as discrete kinetics
’\ K lowest-cost A = B paths models that additionally permit calculation of
N ; summary statistics

== == Pseudo-edge | === Realized edge
J Expected nr. of edges from a vertex v, to
H-Ras Transition Exp Nr. Of Edges any v;in A =1+ ZP 0+ Z P s
v €A
WT Off > On 3.4 x10° Positive correlation between expected nr. of
On > Off 3.9 x 10% edges and physical transition time measured in
Q61L Off > On 1.9 x 1012 wet laboratory
On = Off 3.8 x 1014 Molloy, Clausen, and Shehu. A Stochastic Roadmap Method to Model Protein
. Structural Transitions. Robotica 34(08):1705-1733, 2016 (featured on cover).
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Feasible (Robotics-inspired)
Models of Dynamicsvia Adaptive Search

Calmodulin

Cyanovirin-N

> 16A motion
potent virucidal protein
against HIV-l and influenza

> 13A open-closed motions
accommodating different binding partners 2.5A on <- -> off switching
regulating cascade of signals in living cell regulating cell growth
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Navigation on and Exploration of

0.8

Height/Fitness/Energy

1.00.0

Complex (Configuration) Landscapes

State-to-state navigation

Optimal A = B path(s)

Local view of landscape
|\

N

State space exploration

Find novel states

Global view of landscape

(Protein) Structure(s) = Dynamics = Function

Optimization Problems > Configuration Landscapes = Stochastic Optimization Algorithm/Framework

Connections between robotics-inspired optimization and evolutionary algorithms
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What About State Space Exploration?

/State-to-state Navigatioﬂ /
A 9 B Prot.e;;tj?und
D

-

State-space Exploratio

N
{A} 9 {A} Protfigl-bouh

o>
o O

Ca-bound
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Personal Journey

Some data —explicit and tacit knowledge
2010-

Hybrid Models (data-driven Al, knowledge-guided
shallow ML, shallow ML + Al)

-- sequence/structural biology, social media user
modeling, industrial monitoring, urban planning
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Chapter Il.a — Al Leveraging Small Data
Connecting Dynamics to (Dys)Function

PURE M
K _’._-/-J‘% o, ‘% 0 Small data: For many proteins, we have now accumulated (~20-100ish) structures
:.f’ S .- 7% “caught” at various conditions, with different binding partners, in naturally-
L :’;‘é? _\.:.-’-' 2 occurring and mutated variants (sequences)
Xl Gy WET SV
?é‘j. e 5;;/ G 0 Knowledge guidance: Conformational selection/population shift principle: external
Oﬁ NS "' ‘_g and internal perturbations only affect population probabilities and not the
;’,‘ . % . configuration/state space
Y "‘;.‘ll': ':'\{;Q-
e o 0 Structures do not emerge, they are there
e W ¥ O 8
s _; 0 Change in conditions makes some structures more likely than others

Experimentally-determined structures of WT and diseased
variants are known points in the state space!

Leverage them to define and initialize variable space
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Knowledge-guided and Data-driven Al:
EA Sampling of Protein Energy Landscape

Q € Structures
P € Conformations A

PC,

Ve Offspring ¢/

Vary

—

-

Tl

Improve Transform M-dim point C;” into
_ aa structure S,

Improve/Map S;” to a nearby local
" optimum S;”

Select
P &{P,C"}
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Mapping Energy Landscape of Calmodulin

First-ever view of CaM energy

) 5 Goal2: protein
landscape Goall: protein 836>,

bound

100} -4000
50} =
4350 £
=
of 2
N m
1-4700 ¢
& -50ff s, s Uy S il
& -c‘ﬁcfp. e 4 R .-

O Lowest-cost path compared to lowest-cost tours going through specific
apo-states as candidates for intermediates (PDB ids 2KOE, 1DMO) S

O Paths reconcile findings: wet-lab findings that suggest transitions from {«i«a "A =
Ca-bound to protein-bound states depend on the target-binding Start: Ca ichsbound
protein; in-silico work by Dobson and colleagues that suggests -

fun Rl . Maximova, Plaku, and Shehu. Structure-guided Protein Transition
transitions follow a general, common functioning scenario ! ’
& & Modeling with a Probabilistic Roadmap Algorithm. IEEE/ACM Trans
PC1 Comp Biol and Bioinf (TCBB)15:(6), 1783-1796, 2018.

[IEEE Technical Talk -- IEEE Washington/Northern VA Computer Society Chapter] [16/40]




Sample-based Representation of
Protein (and Peptide) Energy Landscape

First-ever view of H-Ras

WT canonical structure (1CTQ)

WT GTP GAP-bound, 1WQ1

WT, A59G SOS-bound, INV[W,X,U] -
the same mechanism (as for GAP-
bound), involving G12, Q61 in catalysis

Q61L, G12R, G12V-A59T, P38E,

(721P, 421P, 521P, 221P)

Allosteric switch, shift ON

O G12V + Raf kinase (30I[W,U])

O Q70E + Ca compounds
(4DL[WT,S]) Ve

O WT soaked in Ca compounds

(acetate, chlorine ...) 20+

(3LB[H,I,N])

© wT Gt bound, oN (1074) | €nergy landscape

DP

S (1LFD),
Q21.8) ...

Mutations, no effectors | —3 it

(1021,72021)

Y32C, C118S 6300
Fluorescent Ras

7 (2cLi0,6,7,cw))

-6600

O WT (3K8Y) 45 10 .5/ 0 P(5:1 10 15 20\ 25

Allosteric switch, shift OFF

O G12V + Raf kinase (301V)

O Q70E + Ca compounds (4DL[R,V,X,Z])
Q Q61L,1,K\V + Raf (2RG[A,B,C,D])

O No mutations (3RS[0,2,3,5])

WT (6Q21.A,
(3L8Y with cyclen)

@WT GDP bound,
OFF (4Q21)

A59G - 1LFO
WT - 6Q21.D

Amber ff14SB (kcal/mol)

Red — H-RAS on Blue — H-RAS off

Light blue - 1Q21 (GDP bound)

Shades of Brown — allosteric switch
— 1LFO (A59G)

Green, Orange —412P, 721P (G12R, Q61L)

Clausen, Ma, Nussinov, and Shehu. Mapping the Conformation Space of Wildtype and Mutant H-Ras with a
Memetic, Cellular, and Multiscale Evolutionary Algorithm. PLoS Computational Biology 11(9): e1004470, 2015.
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Predicting Phenotypical Impact of Mutations

Level-set based analysis allows identification of basins and saddles and
reconstruction of landscape from hundreds of thousands of multi-dimensional /¢ pounaon
(sampled) points corresponding to protein structures este e N e

3K8Z

[ \
I GDP-bound/Off 1
I

; ! 4021
‘ﬂrﬂ. ’r

1
1
1
Health Diseased Variants: Oncogenic Mutations versus Syndrome-causing Mutations |
1
G12V - F28L i G12C f Q61L

\ T-state e
N 2RGD,~
~ -

it

Spatial and energetic distances of
basins/states of interest be extracted as
landscape descriptors/features

Variations of each landscape-extracted
descriptor (across variants) correlated to
variations of biochemical parameters of
various activities measured in wet laboratory

Qiao, Akhter, Fang, Maximova, Plaku, and Shehu. From Mutations to Mechanisms and Dysfunction
via Computation and Mining of Protein Energy Landscapes. BMC Genomics 19 (Suppl7):671, 2018.
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Chapter I.b — Al Leveraging Small Data

Knowledge-guided Al + Shallow ML, Shallow ML + Al

Sigma protein recognizes promoter

Core RNA polymerase DNA complementary strand

Watson

Promoter

CT_ATTAATCATCGAACTAG_AGTACGCI

-35 box -10 box mRNA start

Kamath, De Jong, and Shehu. Effective Automated Feature
Construction and Selection for Classification of Biological
Sequences. PLoS One, 9(7): €99982, 2014.

Kamath, Compton, Islamaj Dogan, De Jong, and Shehu. An
Evolutionary Algorithm Approach for Feature Generation from
Sequence Data and its Application to DNA Splice-Site Prediction.
|IEEE Trans Comp Biol and Bioinf 2012, 9(5):1387-1398.

Kamath, Shehu, and De Jong. A Two-Stage Evolutionary
Approach for Effective Classification of Hypersensitive DNA
Sequences. J Bioinf and Comp Biol 2011, 9(3): 399-413.

Methicillin-resistant
Staphylococcus aureus, Carbapenem-resistant
Enterobacteriaceae --multi-drug resistant bacteria

Fragment Library

(\ Fragment 1
Fragment k
— &

Fragment N

0coooOoffoooo
N

Kamath, De Jong, and Shehu. An Evolutionary-based Approach
for Feature Generation: Eukaryotic Promoter Recognition. IEEE
Congress on Evol Comput, New Orleans, 2011, 277-284.

[IEEE Technical Talk -- IEEE Washington/Northern VA Computer Society Chap’rer]

Molloy, Van, Barbara, and Shehu. Exploring
Representations of Protein Structure for Automated
Remote Homology Detection and Mapping of Protein
Structure Space. BMC Bioinformatics 15 (Suppl 8):54, 2014.

Veltri, Kamath, and Shehu. Improving Recognition of
Antimicrobial Peptides and Target Selectivity through Machine
Learning and Genetic Programming. IEEE/ACM Trans Comp Biol
and Bioinf, 14(2): 300-313, 2017.

Veltri, Kamath, and Shehu. A Novel Method to Improve
Recognition of Antimicrobial Peptides through Distal Sequence-
based Features. IEEE Intl Conf on Bioinf and Biomed, Belfast,
UK, 2014, pg. 371-378 (Best Student Paper Award).

Kamranfar, Lattanzi, Shehu, and
Stoffels. Pavement Distress
Recognition via Wavelet-based
Clustering of Smartphone
Accelerometer Data. Journal of

Computing in Civil Engineering, 2022.

Kamranfar, Lattanzi, and Shehu.

Monitoring via Multi-objective
Optimization. Intl Conf on Data
Science, Las Vegas, 2020.

Meta-Learning for Industrial System

Rajabi, Shehu, and Purohit.

Information Mitigation on Social
Web. SBP-BRIMS,
Washington, D.C. 2019, 234-244.

User Behavioral Modeling for Fake
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Focus on Representation

Capture Function Constraints on Sequence

Sigma protein recognizes promoter

Core RNA polymerase

Sigma

0&=

Promoter

CTGTTGACAATTAATCATCGAACTAGTATAATAGTACGCA
-35 box 10 box

Example of a biological signature: Motif ‘TTGACA’ at some position i AND ‘TATAAT’ at some position j

>

T

wu

CCCCC

mRNA start

0 Keyinsight: encode implicit constraints in

linear representation
0 Non-local/distal constraints imposed by

function
0 Capture them as features

T

T

G

A

C

A

T

A

T

A

A

T

]

o Rich signatures:

0 Compositional

O  Positional

O Correlational

a
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Explicit, interpretable answer to how

&

sequence encodes function:
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(Sequence) Form = Function:

Explicit, Interpretable Signatures

Grammar Domain

o Contribution #1

Richer representation for local and non-local constraints

o Structured representation in predicate logic:

0 Boolean combinations over basic building blocks

SJOJIBJadO

M

| l
MatchesAtPosition ll MatchesAtPosition

Name Args Retumn Constraints | _
Type

AND 2 non-terminals ~ Boolean

OR 2 non-terminals ~ Boolean

NOT 2 non-terminals ~ Boolean

Matches Motif Boolean

MatchesAtPosition | Motif, Posiion  Boolean

Motif ERC-chars Motif

Position ERC-int Integer | {1,...,162}

Length ERC-int Integer {2,...,6}

ERC-char Character

TR it

o Contribution #2

exploration
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Problem: Exponential explosion of feature space!

0  Genetic Programming for feature space

O Surrogate fitness function instead of wrapper
classification model

0  Complete treatment in classification context
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(Sequence) Form = Function
Explicit, Interpretable Signatures

Automated generation of complex yet interpretable
features that satisfy local and non-local (implicit)
constraints posed by function

Open-source

Training Sequences
<Sequence, Label (+,-)>

S,: ATGTC....CAATTTG +
S,: CATAG ..CCATACT -

s —
Sy ATGC.....TTGGTG +

[ ERC EFs
Evolutionary Feature Construction Evolutionary Feature Selection | 1raining Feature Vectors
<Vector, Label (+,-)>
Features Reduced Features < Cyy Cpz - c1L> +
<fy, Foereeernnfig> — A e fi> < Cay oz -y Co1>
M<< N L<< M see

-
Training Feature Vectors

<Vector, Label (+,-)>
<€y Cyzp oy Cm> +

< €y Cygp oy Cop ™ -

EFFECT FRAMEWORK

< Oy Cnze s CyL >

Testing Sequences Testmg Feature Vectors
<Sequence, Label (+,-)> <Vector, Label (+,-)>
< Cnegtr Caar s C 2 F

Sysr: ATGTC... CAATTTG + < Crezts Caze o G2 > -

\ < Cyy CNzr s Cm> + / Sysai CATAG ..CCATACT - - J. .'.
LE N J

< ek tr CNoe - CL>
Syex: ATGC.....TTGGTG +

/

\(Sm +)

(Naive Bayes)
(Evaluation— auPRC, auROC)

— Classifier Model

Predictions
(S1, +) (Snss +)
(52 -) (Snazs )
LR N ] see

Classifier

(Swers +y

[IEEE Technical Talk -- IEEE Washington/Northern VA Computer Society Chapter]

[22/45]



Superior Performance on Hard Problems:
Recognition of HSS Sites,Promoter Sites, and More

Algorithm auROC auPRC .
Feture bosed Interpretable features validated and (OR
K-mer 82.20 82.6 _ (MP (Motif (5) AGGCG) @ 84)
Gibbs Sampline 70.3 50.3 advanC|ng knowledge (OR
| EFFECT 89.7 89.2] (MP (Motif (3) TCG) @ 47)
Statistical-based (OR
PWM-HMM 70.8 47.8 ) ) ) ) (OR
BayesNetwork 72.5 40.5 Known signals in a typical pre-mRNA include the branch (OR
HomogenousHNMM 82.02 715 i T i ; ; (OR
WAM-FIMM 005 0 site, the pyrimidine-rich region, splice site consensus .
. (MP (Motif (2) GT) @ 85)
MSP 85.5 72.9 signals, and (OR

- (MP (Motif (3) AGC) @ 79)
Kernel-based

el oo ws | Feature and Kernel Evolution for | weweieiae esa))

Weighted PositionShift  80.93 64.9 ((MP((MO“:((? G’;‘G) @ ;3}3) )
S ‘ o[ . . MP (Motif (2) TC) @ 47
Information Gain Comparison
= Improved Classification via SVM | we ot yacer @ 2
0169 a
501 - (OR (a)
£ o] i (AND
£ oie Many A/C-rich motifs, such as CACACA, GCCCAA, :mitc& (M:{t;f) g;*gcgs
004 . . . ti
B = — el o8 | E=h | CATTCA, CCTACA, found and hypothesized in ) {Maid )
¢ 8 g 2 experiment (OR
B 5% v3 (OR
- g (MP (Motif (2) GT) @ 85)
(MP (Motif (2) AG) @ 84) )
Means and Std Deviations Kamath, De Jong, and Shehu. Effective Automated (AND _
Low Norbsr  Men  SdDs Mo Lower % Upperss Feature Construction and Selection for Classification of mg ng: Eé; ;C\A?)cg?)@ 151))))
GIBBS SAMPLING ‘123; 0 005564 um-s;is 000M3 00T 000001 Biological Sequences, PLoS One, 9(7) €99982, 2014. i
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Shallow ML Pt I: Focus on Features
(Protein Structure) Form = Function

Remote (protein) homologs: o How to extract functional information
Low sequence identity but high ) \ from structure?
structure = function similarity o Key insight: Add spatial information to
building blocks
o Objective: reduced yet informative
representation of structure

Fragment Library

S/\ Fragment 1
" Fragment k o Analogies with text mining
‘ o Topic-based representation via

Fragment N Latent Dirichlet Allocation (LDA)

0cooooffloooo o Reduction: 400~ 10 dimensions!
N
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Superfamily Recognition with Support
Vector Machines over Learned Topics

Fraghag Representation Topic-Based Representation

L. SCOP Superfamily Accuracy (%) | TPR | FPR | AUC || Accuracy (%) | TPR | FPR | AUC

o Prediction of P-Loop Binding 96.4 098 [ 005 [ 095 [ 843 097 029 |0.84

. . Immunoglobin 100.0 1.00 | 0.00 | 1.000 || 99.9 0.99 | 0.0 1.0

Su pe rfa mi |y mem b ers h l p NAD(P):I)imling Rossman Fold | 98.7 0.99 | 0.02 | 0.99 90.9 0.94 | 0.13 | 0.91
Thioredoxin-like 98.8 0.98 | 0.01 | 0.99 80.2 0.92 | 0.32 | 0.80

alpha/beta Hydrolases 99.1 1.00 | 0.02 | 099 92.7 0.95 | 0.10 | 0.93

EF-hand 100.0 1.00 | 0.00 | 1.000 || 98.8 0.99 | 0.01 | 0.99

Winged helix DNA-binding 98.7 0.98 | 0.0L | 0.99 84.4 0.79 | 0.11 | 0.84

P-LOOP Binding

Immunoglobin

o Topic signatures

. NAD(P)-binding Rossman-fold
across superfamilies

Thioredoxin-like
alpha/beta-Hydrolases
EF-hand

Winged helix DNA-binding

12345
LDA Topics

[IEEE Technical Talk -- IEEE Washington/Northern VA Computer Society Chapter]
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o Other contributions:

0 Detection of remote homologs

0 Organization of protein
structure space that preserves
function co-localization

Molloy, Van, Barbara, and Shehu. Exploring Representations
of Protein Structure for Automated Remote Homology
Detection and Mapping of Protein Structure Space. BMC
Bioinformatics 15 (Suppl 8):54, 2014.
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Predicting Pavement Distress from Passively-
collected Smartphone Data

! 2018 Honda Accord vehicle and
iPhone XS smartphone to
collect accelerometer Z data on
road segments in NOVA

= 5 ) Human labels: sparse and noisy = Bridge joints, Cracking, Potholes,
[~ Vs b - ot .
~ ~ | Patching, vs. Normal
Example of challenges: |
how to distinguish “normal” patch from utility patch? Clusterl Cluster? Cluster3 Clustera
] Unsupervised learning over wavelet-based 4
features to group data into clusters Fracki|

] Internal multi-objective Pareto-based selection of
unsupervised strategy

v Bridge Joints

Cluster6

Cluster7 Cluster8 Cluster9

o le

Cluster5
) Evaluation informed by present labels shows
coarse distinctions can be made @

Kamranfar, Lattanzi, Shehu, and Stoffels. Pavement Distress
Recognition via Wavelet-based Clustering of Smartphone
Accelerometer Data. J of Computing in Civil Engineering, 2022.

Potholes
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Personal Journey

Lots of data — Al romance w/ tacit knowledge
2018-

Deep Learning, NLP, Deep generative models

-- sequence/structural biology, mental health,

traffic forecasting, Al for Policy

Po- Y

1S T0

ociety Chapter] [27/45]
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Methicillin-resistant

Staphylococcus aureus (MRSA), Carbapenem-
resistant Enterobacteriaceae, etc. Increasing

Our First Foray into DL:
Sequence =2 Antimicrobial Activity

numbers of multi-drug resistant bacteria

B-Defensi
H. sapie

Aurelinl
A. QUK
PD

Nt

Magainin 2

X. laevis
PDB: G

—
LL-37

H. sapiens
PDB: 2

[IEEE Technical Talk -- IEEE Washington/Northern VA Computer Society Chapter]

o Convolutional layers allow incorporating local effects from amino-
acid neighbors in the peptide chain

o Recurrent layer handles arbitrary-length peptides

o Outperforms all existing ML models (including our own 2017 work)

 Sequence-to-Vector Conversion

Amino acids ave cach assigned a numbeyr 1-20, X is assigned
0 which is 8Jso used for padding shorter sequences

’ -
X, A C O, 8 F O, N I K L MNP QRS TV MY . 1 !‘
0 1 2 3 4 35 & 7 8 9103132131415 36137181920 . d
. @188t @
Example Conversion: . e R h
A, A

?
o
.
®

FLPLIGKVLSGIL

<0.0,0,...,9,0,0,5,10,13,30,9,6,9,1%,10,36,6,8,10>
Sequer .‘--‘ VOCLOrS are padded with O's untd 200 in length
Input X
a8 < Output Y
X N K)
oRB NS
- f.‘/'i'R
I LA AN =1
Embedding Layer Convolutional Layer Max Pooling LSTM Layer Sigmold Result
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Sequence =2 Function via Deep Learning

Sacrificed Interpretability

—
fable 2. Performance comparison on the AMP dataset testing partition

am IEEEIACM TRANSAGTIONS ON GOMPUTATIONAL BIOLOGY AND BIGRFORMATICS, VOL 14, NO.2, MAACHIASAL 2017

Improving Recognition of Antimicrobial Peptides
and Target Selectivity through Machine Learning
and Genetic Programming

Daniel Veltri, Uday Kamath, and Amarda Shehu
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1 INTRODUCTION

'HE U S. Center for Disease Cantrol estimates thal maore

than two million peoplein the U.5. are diagnosed with
antibiotic-resistant infections every year. With some sug-
gesting an era of untreatable infections has arrived (1], there
5 renewed focus on pursuing novel antibacterials (2], The
discovery of anti-pathogen peptides in the innate immune
system of many organisms has been met with great enthusi-
asm. The effectiveness of these antimicrobial peptides

correlate with antibaclerial activity. For instance, studies of
interactions with bacterial membranes rule out the employ-
ment of a universal sequence motif and instead have led to
fundamental determinants or features, such asresidue com-
position, charge, length, secondary structure, hydrophobic-
ity, and amphipathic charmcter [4] Though labarious and on
2 case-by-case setting, wet-lab studies are o reveal
mare features that contribute to antibacterial activity (3],

(AMPS) in killing even resistant bacteria ignifi-
cant research in the last two decades on characterizing
AMPs and understanding how they can be effectively
employed to combat even multi-drug resistant bacteria [3].
Experimental and computational studies devoled 1o
answering the open question of what governs antibacterial
activity in AMPs have generally proceeded orthogonally. In
the experimental community, the focus has been largely on
temp ate-based studies (where known AMPs are modified
and tested against bacterial cultures in the wet laboratory)
and systematic virtual screenings of peptide libraries (3.
Such studies, though narrow in scope, have advanced
knowledge by elucidating what biological properties
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Computational research has focused on AMP recogni-
tion as a means of understanding what features relate to
activity. Techniques from machine lexming are applied,
seeking to test the predictive power of a given set of
features in the context of supervised classification. Meth-
oads of choice include support vector machines (SVM),
hidden Markov models (HMMs), artificial neural nel-
warks (ANN) and logistic regression (LR (51, 6], I7], I8],
(91, [10], [11). Features vary, from those elucidated by
wetlab studies which characterize the entirety or part of
a peplide, to simple ones based on amino acid composi-
tion (7], [8], and to averaged whole-peptide physicochem-
ical profiles built on known amino acid praperties [9]
Recently, wetlab studies have begun to use some of these
classifiers with limited success as an initial screening
mechanism for new AMP sequences (121,

As Table | summarizes, the recognition accuracy of
machine learning methods ranges from the upper 70 to
the lower 90 percent. Direct comparisons are difficult due
to the use of different training and testing datasets. Some
high performers fall short on more recent challenging
datasets [11]. The consensus is that performance has stag-
nated, and the community is shifting its attention to con-
structing effective features [13]. This is non-trivial, not
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Deep learning improves an
recognition
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ethod SENS(%) SPEC(%) ACC(%) McC auROC(%)
ntiBP2 87.91 2080 89.37 0.7878 89.36
AMP-ANN 82.98 85.09 34.04 0.6809 84.06
SAMP-DA 87.08 30.76 8392 0.6797 89.97
'AMP-RF 92.70 8244 87.57 0.7554 93.63
SAMP-SVM 88.90 7992 8441 0.6910 90.63
AMP-2L 83.99 35.36 34.90 0.6983 84.90
[AMPpred 89.33 8722 8827 0.7656 94.44
kmSVM 88.34 90.59 89 46 0.7895 94.98

Dur DNN 89.89 92.13 21.01 0.8204 96.48

NN reduced amino acid 88.66 (+4.06) 90,47 (+3.05) 89.57 (+0.94) 0.7938 (+0.02) 96.13 (+0.32)
NN random amino acid $1.00 (+5.95) 81.64 (=7.73) 8132 (+3.19) 0.6310 (+0.06) 89.55 (+2.55)
kmSVM reduced amino acid §7.92 B7.64 87.78 0.7556 94.16
kmSVM random amino acid 80.02(x3.77) 78.13 (£3.22) 79.07 (£3.18) 0.5819 (=0.086) 86.68 (£3.17)
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Note: Recognition performance on the testing dataset is shown for

ormance on a metric is marked in bold. Our DNN model is shown in

nodel on the DNN-reduced versus random alphabets,

state-of-the-art methods (listed in column 1) on the metrics listed in columns 2-6. Best per-
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Machine learning methads are now commanly adapted by wet-lshoratory researchers to screen
for promising candidates.
Results: In this work, we utiliz deep leaming 1o recognize antimicrobial sctivity. We propose a neursl
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row 9. The four botrom rows show performance of the DNN model and the gkmSVM

= Our Model - AUC: 96.48%
= = iAMPpred - AUC: 94.44%
=== CAMP RF - AUC: 93.63%
-~ CAMP SVM - AUC: 90.63%
—— CAMP DA - AUC: 89.97%
— = AntiBP2 - AUC: 89.36%
-+ jAMP-2L - AUC: 84.90%
== CAMP ANN - AUC: 84.06%

I T I I | I
0.2 0.4 0.6 0.8 1.0

False positive rate
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Let’s Play: See Ma, no Hands!

Generate Protein Structures with Deep Models
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1Datase( 9) Nova-2 (Dataset 8) N-terminal (Dataset 2) Human (Dataset 13) Aspartyl (Dataset 8)

KH3 K-homology RNA-
binding domain

protease from HIV-1 Hyperthermophile protein

isolate BRU

fragment of NS1 Carboxypeptidase
protein from influenza A A2

Guo, Du, Tadepalli, Zhao, and Shehu. Generating Tertiary Protein Structures via
Interpretable Graph Variational Autoencoders. Bioinformatics Advances 1(1):
vbab036, 2021

Rahman, Du, Zhao, and Shehu. Generative Adversarial Learning of Protein
Tertiary Structures. Molecules 26(5): 1209, 2021.

Rahman, Du, and Shehu. Graph Representation Learning for Protein
Conformation Sampling. IEEE Intl Conf on Comput Adv in Bio and Medical
Sciences (ICCABS) 2021, Virtual, 2021.

Alam and Shehu. Generating Physically-Realistic Tertiary Protein Structures with
Deep Latent Variable Models Learning Over Experimentally-available
Structures. IEEE Intl Conf on Bioinf and Biomedicine Workshops: Computational
Structural Biology Workshop, Virtual, 2021, pg. 1-8.

[8:15 AM, 8:20 AM, ...,

Alam and Shehu. Variational Autoencoders for Protein Structure Prediction.
ACM Conf of Bioinf and Comput Biol, Virtual, 2020, pg. 1-10.

[IEEE Technical Talk -- IEEE Washquon/Nor’rhern VA Computer Soae’ry Chapter]

Generate Small Molecules with Desired Properties
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Du, Guo, Shehu, and Zhao. Disentangled Representation
Learning for Interpretable Molecule Generation. Bioinformatics
(under review)

Du, Guo, Shehu, and Zhao. Interpretable Molecular Graph
Generation via Monotonic Constraints. SIAM Conf of Data
Mining, Virtual, 2022.

Du, Wang, Alam, Lu, Guo, Zhao, and Shehu. Deep Latent-
Variable Models for Controllable Molecule Generation.
|IEEE Intl Conf on Bioinf and Biomedicine, Virtual, 2021.

Emotlons and mental health from social media text

Vajre, Naylor, Kamath, and Shehu. PsychBERT: A Mental Health Language
Model for Social Media Mental Health Behavioral Analysis. IEEE Intl Conf
on Bioinf and Biomedicine, Virtual, 2021.

9:15 AM, 9:20 AM, 9:25 AM, .

Predict

Rajabi, Uzuner, and Shehu.
Detecting Scarce Emotions Via BERT|channel BiLSTM-CNN Model for
and Hyperparameter Optimization. |Multilabel Emotion Classification of
Intl Conf on Artificial Neural
Networks,2021.

Rajabi, Uzuner, and Shehu. A Multi-

Informal Text. IEEE Intl Conf on
Semantic Computing, 2020.

Lu, Kamranfar, Lattanzi, Shehu. Traffic Flow Forecasting
with Maintenance Downtime via Multi-Channel Attention-
Based Spatio-Temporal Graph Convolutional Networks.
|IEEE Transactions on Intelligent Transportation Systems
(under review).
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Disentangled Graph-based VAEs for Protein
Structure Representation Learning

&‘% Aim 2: Interpretability Enhancement
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Aim 1: Graph generative learning for contact map generation
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Physically-realistic Structures, Outperforms
GraphVAE, GraphRNN, Graphite, etc.
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(Dataset 9) Nova-2 (Dataset 8) N-terminal (Dataset 2) Human (Dataset 13) Aspartyl (Dataset 6)
KH3 K-homology RNA- fragment of NS1 Carboxypeptidase protease from HIV-1 Hyperthermophile protein
binding domain protein from influenza A A2 isolate BRU
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Latent Factors Control Structural Changes

Guo, Du, Tadepalli, Zhao, and Shehu. Generating Tertiary Protein Structures via Interpretable
Graph Variational Autoencoders. Bioinformatics Advances 1(1): vbab036, 2021

Z=10000

Z=1 Z:=10000
Fig. 5: Left: Generated contact graphs for a selected protein target; four semantic factors in the latent variables (i.e., Z3, Zg, Zg, and Zg) control changes
in the contact graphs; the value of latent variables changes from 1 to 10000; Right: corresponding reconstructed tertiary structures.

[IEEE Technical Talk -- IEEE Washington/Northern VA Computer Society Chapter] [33/45]



Graph-based VAE Models for Generating Small
(Drug-like) Molecules w/ Property Control

(a) B-VAE (b) Cond VAE ' (c) CSVAE (d) PCVAE
-:»@\“ = o@ = @ |= = ) = = &) 2 r:> s
®/@) Sampling 9‘ ®/ Sampling Sampling @ Sampling 9

Encoder Decoder Encoder Decoder Encoder Decoder Encoder Decoder
Each sub-figure depicts the generative model (decoder) and its model inference (encoder). The enforcement of independence is shown by dotted red arrows,
whereas the invertible dependence between two variables is represented by double arrows. Data is denoted by X and Z. W are subsets of latent variables, and Y
denotes the molecular properties (cLogP, cLogS, PSA, SA, Weight, and Drug-likeness).

Models generate valid, novel, and unique molecules. Validity

QM9 ZINC MOSES _
Model | Validity Novelty Uniqueness| Validity Novelty Uniqueness| Validity Novelty Uniqueness measures the fraction of generated molecules that are
B3-VAE |100.00% 98.23% 99.28% |100.00% 100.00% 99.78% |100.00% 99.92%  99.88% | chemically valid. Novelty measures the fraction of generated

CondVAE [100.00% 92.60%  90.00% [100.00% 99.98%  98.02% [100.00% 99.98%  93.30% molecules that are not in the training dataset. Uniqueness
CSVAE [100.00% 97.01% 27.41% |100.00% 100.00% 42.72% |100.00% 100.00% 54.28% measures the fraction of generated molecules after and
PCVAE |100.00% 97.43%  88.24% |100.00% 100.00% 99.48% |100.00% 99.96%  98.62% before removing duplicates.

B-VAE CondVAE CSVAE PCVAE Mutual Information values between each disentangled factor learned by a

gl N (QM9-trained) model and properties computed on molecules generated by
’ i ; : " the model show several models affording better property control.
] Lj i ~ The models leverage both graph representation learning to learn inherent
" ; . constraints in the chemical space and inductive bias to connect the chemical
i v and biological space. Promising step in controllable molecule generation in

clogP clogSWeight Drug PSA  SA clogP clogsWeight Drug PSA  SA clogP clogs Weight Drug PSA  SA support of cheminformatics, drug disco\/ery, etc.

[IEEE Technical Talk -- IEEE Washington/Northern VA Computer Society Chapter] [34/45]
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DL & NLP for Mental Health:
Transformer-based Classification Models

0 Depression alone is estimated to affect more than
300 million people worldwide, but approximately
35% of adults let their depressive symptoms go
untreated.

0 Most Interactions happen on social media (Twitter,
Reddit, Facebook, Instagram, SnapChat,..)

0 Social Media communication can be an indicator
of symptoms/signs of mental health

0 Natural language processing and machine learning
can be used for detection of these symptoms.

Key Idea: Fine-tune a pre-trained language model
(BERT) to learn representations of words related to
mental health, and then add classification layer

[IEEE Technical Talk -- IEEE Washington/Northern VA Computer Society Chapter]

® O ® 0 ° °
'M'M“I‘ 1in 5 Americans
u HAS A MENTAL HEALTH CONDITION
12.8 MILLION ADULTS uvewitHA SEVERE MENTAL ILLNESS

481 MILLION 171 MILLION 10 MILLION 91 MILLION

ADULTS ADULTS ADULTS ADULTS

LIVE WITH LIVE WITH LIVE WITH LIVE WITH

ANXIETY DISORDERS MAJOR ATTENTION DEFICIT POST TRAUMATIC

oniety dhcetiacs wre -cotions DEPRESSION HYPERACTIVITY STRESS DISORDER
DISORDER Postraumatic stress disorder (PTSD)

characterized by feelings of
is  condiition that is characterized by

changes in sleep, thinking, and mood
and can include symptoms sucl
intrusive memories, hypervigilance
and outbursts of anger.

Attention deficit hyperactivity
disorder (ADHD) is a condlition that
is characterized by inattention,
hyperactivity and Impulsivity.

is characterized by changes
in mood, sieep, appetlte,
concentration and energy.

71 MILLION 3.5 MILLION 1.6 MILLION

ADULTS ADULTS ADULTS
LIVE WITH LIVE WITH LIVE WITH
BIPOLAR DISORDER BORDERLINE SCHIZOPHRENIA .
PERSONALITY o rortueno e s cosmion Discover more at

Bipolar disorder is a condition that
s characlerized matic shifts DISORDER characterized by an interruption nami.org/policy.
of a person's thought processes

perceptions and emotional

responses. Symptoms may include

psychosis, delusions, hallucinations,

reduced emotional expressiveness

and disorganized thinking.

L4 Borderline personality disorder
perlods of mania and depression. (BPD) is a condition characterized

and can also inchide symptoms of by difficulty regulating emotions and
psychosts, such as delusions.

and functioning, impulsive actions
and unstable relationships.
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DL & NLP for Mental Health:
Transformer-based Classification Models

Mask LM Mes
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Contextual representations: (SOTA)

0 BERT is a multi-layer bidirectional
Transformer encoder

Masked Sardencs &
. Unlabeled Samtencs A s B Pas

Pre-training

0  BERT generates word representations
by considering both positional and
contextual information.

...

Fine-tune pre-trained BERT over relevant
social media text and PUBMED
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psychology and neuropsychiatry journals

Social Media Mental Health Specific Behavior Classifier Signs/Behaviors
Conversations Conversation Classifier
| |
;/ Anxiety
PsychBERT YES
) Language Model =

% Menlal .\
Media‘ ) Classifier ) Health ) PsychBERT D:;:‘:::'o
n Y

| stream | | \ S Classifier \ Loneliness /
\ A/ Suicide .
@ \ \Anxe(y? L4

. .
‘ Twitter PubMed

Twitter \
—_—

( N\ & L
Reddit Reddit
Loneliness 1

0 Stage 1: PsychBERT
language model & a
binary classifier used =l
to classify and split into
mental health/non

mental health

Social Media Sources Size Traits

Twitter hashtags 19,943 | depression
Twitter hashtags 21,208 | social anxiety
Twitter hashtags 19,975 | loneliness
Subreddit r/anxiety 11,544 | anxiety

Subreddit r/mentalhealth | 18,924 | mental illness
Twitter hashtags 2,344 depression
Subreddit r/suicidewatch | 12,276 | suicide

Subreddit r/jokes 30,786 | non mental health
Subreddit r/meditation 25,743 | non mental health
Subreddit r/parenting 49,684 | non mental health

0 Stage 2: Takes only
mental health-classified

data as input and uses
PsychBERT and a multi-

class classifier to
separate into 6 classes

[IEEE Technical Talk -- IEEE Washington/Northern VA Computer Society Chapter]
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DL & NLP for Mental Health:
Transformer-based (Interpretable) Model

Mental vs. Non-Mental Health
Category Classifier Fl
Naive Bayes 0.91
Traditional Logistic Regression | 0.95
Decision Tree 0.73
Boosted Rules 0.88
Interpretable DL&.5 0.94
EBM 0.88
Kim CNN 0.94
Deep Learning | LSTM 0.95
Transformers PsychBERT 0.98
Multi-class Classification
Category Classifier Fl
Naive Bayes 0.41
Traditional Logistic Regression | 0.36
Decision Tree 0.33
Boosted Rules 0.44
Interpretable DLB.5 0.47
EBM 0.39
Kim CNN 0.57
Deep Learning | LSTM 0.51
Transformers PsychBERT 0.63

[IEEE Technical Talk -- IEEE Washington/Northern VA Computer Society Chapter]

Local explanations for PsychBERT on a true positive (top) and true
negative (bottom) via feature attribution (integrated gradients in
Captum library)

[CLS] Getting worried | " ve had su ##icidal thoughts since | was 17 | ' m 23 now . Every year the thoughts get
worse . 2018 has been the most challenging year of my life with family my girl my friends | have lost everyone
had people who | gave my trust to betray me and now | can "t trust anyone . | have no one who cares about
me or checks up on me . Maybe | just need to get used to being alone , but the past few days | ’ ve found
myself planning to kill myself without trying . It just happens | see itin my head . | ' m not sure if this is a
phase or if | need help . [SEP]

[CLS] What ' s the best strength training | can do at home without equipment ? | ' ve been go ##og ##ling and
this comes up as the top result : 20 body weight sq ##ua ##ts . 10 push ups . 20 walking lung ##es . 10 dumb
##bell rows ( using a gal ##lon milk j ##ug ) 15 second plan ##k . 30 jumping Jack ##s . Rep ##eat for 3
rounds . Is this a decent enough home routine ? | ' m trying to switch from card ##io to strength training ( or
trying to incorporate strength training at least ) after reading the article from the begin ##ner guide on the side
##bar , and wanted to look for a good routine to follow . [SEP]
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Traffic Speed Forecasting with Work Zones

| v
Road segments: Using a sensor in each area .'L Y .

to record the location of the current road £l
conditions and vehicle speed

{0

Tyson’s Corner in Fairfax, Virginia

0 131 road segments, include interstate

highway, Virginia state route, etc.

0 12 months timeframe (2019) . =

O 10 traffic attributes
O 478 construction work events

0 10677 rows of traffic speed and T =

construction work information N/ h
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Graph convolution network

| Spatial + Temparal

Spatial + Temporal

Attention Attention
¥ L
Spatial Spatial
} convolution convolution
o —
Speed
E ) v L
Temporal Temporal
convolution convolution
¥ L
Residual Conv | Residual Conv |
+ LayerNorm + LayerMorm
Layer 1 Layer 2

1x1

convolution

~
A

¥ . ,‘ Loss = |[Y—F)2
— L
Bidirectional RNN

v

Linear Operation
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Traffic Speed Forecasting with Work Zones
via Spatial and Temporal Attention

110-04174
110-04176
110404174
110P04177
110P04173
110NO4176 -

Predicting Traffic Speed in the Presence of e
Construction (project between Mason Center iicrose

of Transportation and VDOT) 110404607 -

100

il

110P04609
s Ground truth 110-04611 -
110+05695 80

¥ 110N05692 -
s 1 5702 ~

% 1
- 1 5696
§ 110-05694 -

15min+ : Good z“
30min+: Fair  Jovsess

110-05701
N 110-10015 -
60min+: Bad tiorionss ‘
110410017 - 40
110N10021
110P10014
110N10015 -
110-10014
110-10017
110N04227
110P04229 - 20
110-04228 -
/ 110N04229 -
110P04228 -

Attention based spaf?c;—temporal graph  Challenge: predictions further into the

convolutional network performs well future become increasingly unreliable
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The Map is not the Territory

Science and Sanity (1933)

Greek, pre-scientific (idealism) Alfred Korzibsky
Observer-centric; observed reality does not matter 1879-1950
Classical scientific (materialistic) MOO'
tific (mate e/.
Observed reality-centric; observer does not matter Qs
e e
é:\’ fo) .C/aSS/' dR@S@
Modern scientific (pre-digital) [no to small data] ’70,4/
Human knowledge depends on both the observed reality and the observer /@dge
..-2010 Data
4 ’7
Modern digital (data-centric) [big data = Largely Deep Learning] MGC/, .a/ytic Y
Human knowledge entirely derived from the data 'he L Od@/'
Observed reality and the observer do not matter 2010 - ... aCll' €ar, "7g
¢ h
'70,,1/ ’ngo
? leq,
8e
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/
Search, Optimization,
Planning

Machine Learning,
Deep Learning

O We know how to do optimization O DL literature current version of gold rush

L We have done it for decades O Ad-hoc approaches

L We understand loss/objective functions Broblems L Confounding of terms

L We understand multiple objectives e U Multi-objective for aggregated functions
a

We understand exploration versus Solutions O Heuristics abound
exploitation deeply

U

Papers on +.5 improvements! (SOTA chasing)

U

We know how to design optimization 0
algorithms to high-dimensional, non-linear engineering exercise and foundational

variable spaces computing research
[IEEE Technical Talk -- IEEE Washington/Northern VA Computer Society Chapter] [42/45]
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Wishes for Scientific Discovery, Innovation,
and Education

0 Increasingly, all our students want to do is deep learning to respond to the market
0 Promotes group think and narrows scientific ingenuity and discovery
0 Important to train students in interdisciplinary setting [Al/ML + X]

0 Vast uncharted territory for Al/ML-based discoveries
0 Algorithmic-mediated society
0 Challenging problems =2 foundations of Al/ML

0 Scientific Al & ML frameworks over brute-force engineering facilitated by big data
0 Polanyi’s Paradox = Polanyi’s Revenge [Kambhampati. CACM (61):2, 2021]
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0 Important to train students in interdisciplinary setting [Al/

0 Vast uncharted territory for Al/ML-based discoveries
0 Algorithmic-mediated society
0 Challenging problems =2 foundations of Al/ML

0 Scientific Al & ML frameworks over brute-force engineering fac
0 Polanyi’s Paradox = Polanyi’s Revenge [Kambhampati. CA(

“Human, grant me the serenity to accept the
things | cannot learn, data to learn the things
| can, and wisdom to know the difference.”
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Wishes for Scientific Discovery, Innovation,
and Education

0 Increasingly, all our students want to do is deep learning to respond to the market
0 Promotes group think and narrows scientific ingenuity and discovery
0 Important to train students in interdisciplinary setting [Al/ML + X]

0 Vast uncharted territory for Al/ML-based discoveries
0 Algorithmic-mediated society
0 Challenging problems =2 foundations of Al/ML

0 Scientific Al & ML frameworks over brute-force engineering facilitated by big data
0 Polanyi’s Paradox = Polanyi’s Revenge [Kambhampati. CACM (61):2, 2021]
0 DL models do not generalize well and are unsustainable
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Percent error
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Wishes for Scientific Discovery, Innovation,

and Education

Equivalent carbon-dioxide emissions, pounds

10° 10' 10° 10° 10"
| [ | | |
2012 CO, generated CO, generated CO, generated
30— 2O by average U.S. by average by Boulder,
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NEIL C. THOMPSON KRISTJAN GREENEWALD KEEHEON LEE
GABRIEL F. MANSO. IEEE Spectrum. 24 SEP 2021

By 2025, the error level in the best deep-
learning systems recognizing objects in
the ImageNet data set should be reduced
to just 5 percent.

But the computing resources and energy
required to train such a future system
would be enormous, leading to the
emission of as much carbon dioxide as

New York City generates in one month
SOURCE: N.C. THOMPSON, K.
GREENEWALD, K. LEE, G.F. MANSO
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