

Design of Computing-in-Memory: Analog vs. Digital

Tony Tae-Hyoung Kim

School of Electrical and Electronic Engineering Nanyang Technological University

IEEE SSCS Distinguished Lecture @ ETH, Zurich, Switzerland

Outline

- Introduction
- Computing-in-memory Basics and Challenges
- State-of-the-arts Computing-in-memory
- Summary

Outline

Introduction

- Computing-in-memory Basics and Challenges
- State-of-the-arts Computing-in-memory
- Summary

Machine Learning for Edge Devices

• Tiny machine learning for IoT devices has wide applications.

[Source: eBizSolutions]

Ubiquitous IoT Devices and Embedded ML

Personalized Healthcare

ീ

[MIT HAN Lab]

Smart Manufacturing

Smart Home

Autonomous Driving

• IoT devices and embedded ML models increasingly ubiquitous in the world

Machine Learning for Edge Computing

- Face Recognition
- Speech Recognition
- Image Classification
- Object Detection
- High Power Consumption
 - AlphaGo (1MWatt) vs Human (20W)

- Faster Local Decisions
- Less Communication
- More Secure (local data)
- Requirements:
 - Low power consumption
 - Low storage capacity
 - Real-time processing

Convolutional Neural Networks (CNNs)

Popular DNN Models

[Sze, NeurIPS'19]

Metrics	LeNet-5	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50	EfficientNet - B4
Top-5 error (ImageNet)	n/a	16.4	7.4	6.7	5.3	3.7
Input Size	28x28	227x227	224x224	224x224	224x224	380x380
# of CONV Layers	2	5	16	21 (depth)	49	96
# of Weights	2.6k	2.3M	14.7M	6.0M	23.5M	14M
# of MACs	283k	666M	15.3G	1.43G	3.86G	4.4G
# of FC layers	2	3	3	1	1	65
# of Weights	58k	58.6M	124M	1M	2M	4.9M
# of MACs	58k	58.6M	124M	1M	2M	4.9M
Total Weights	60k	61M	138M	7M	25.5M	19M
Total MACs	341k	724M	15.5G	1.43G	3.9G	4.4G
Reference	Lecun, PIEEE 1998	Krizhevsky, NeurIPS 2012	Simonyan, ICLR 2015	Szegedy, CVPR 2015	He , <i>CVPR</i> 2016	Tan , <i>ICML</i> 2019

• Larger and deeper DNN models: not suitable for IoT devices

*** ***

Conventional Computing Architecture

- Von Neumann Architecture: data movement across memory layers and system bus
 - Long latency, high power consumption, hardware cost

[[]M. Horowitz, ISSCC'14]

Architecture vs. Energy Efficiency

- Von-Neumann architecture: computation bottleneck and excessive energy consumption due to memory access.
- Computing-in-memory: high energy efficiency and high performance with massive parallelism

Outline

- Introduction
- Computing-in-memory Basics and Challenges
- State-of-the-arts Computing-in-memory
- Summary

Computing-in-Memory: Basics

- Computation of MACs inside of memory
- Features
 - Activation of multiple rows
 - Analog bitline voltage or current for representing MAC results
 - Digitization using Analog-to-digital converters

Less (or no) Intermediate Data

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

Synapse: SRAM Bitcell

[Kim, ISCAS'21 Tutorial]

- A (binary) synapse can be mapped to a single SRAM bitcell
 - Multiplication in the SRAM bitcell

Synapse: SRAM Bitcell

[Kim, ISCAS'21 Tutorial]

- A neuron is mapped to a column of bitcells
 - A dot-product between input and weight & an activation is performed

Synapse: SRAM Bitcell

[Kim, ISCAS'21 Tutorial]

- A feedforward neural network is mapped to entire SRAM macro
 - Many parallel dot-products = a matrix (weight) vector (input) multiplication

Binary MAC Operation in 6T SRAM Cell

- Differential bitlines
 - Input X = 0/1 and weight W = -1/+1
 - Three different voltage differences: 0 V, ΔV , and ΔV

X W	+1	-1
0	0	0
1	-ΔV	ΔV

Binary MAC Operation in Single-ended BL

[Dong, ISSCC'20]

- Single-ended bitline
 - Input X = 0/1 and weight W = 0/1
 - Two different voltage differences: 0 V and ΔV

X W	0	1
0	0	0
1	0	ΔV

- Disturbance during MAC operation
- Bit cell area
- Narrow dynamic range for linearity
- Limited precision
- ADC area/power overhead
- Limited reconfigurability

Disturbance during MAC operation

- Internal nodes affected by bitline voltage
- Data flip due to multiple enabled SRAM cells and a wide bitline voltage range
- Bit cell area
- Narrow dynamic range for linearity
- Limited precision
- ADC area/power overhead
- Limited reconfigurability

- Disturbance during MAC operation
- Bit cell area
 - Decoupled bitcells for removing disturbance
 - Additional TRs increasing area overhead
- Narrow dynamic range for linearity
- Limited precision
- ADC area/power overhead
- Limited reconfigurability

[Jiang, ESCIRC'19]

0.85

0.80

0.75

0.70

0.65

0.60

[Yu, CICC'20]

[Kang, JSSC'18]

- Disturbance during MAC operation
- Bit cell area
- Narrow dynamic range for linearity
 - Nonlinear voltage step depending on MAC value
 - Limited dynamic range: 200~300mV
- Limited precision
- ADC area/power overhead
- Limited reconfigurability

- Disturbance during MAC operation
- Bit cell area
- Narrow dynamic range for linearity
- Limited precision
 - Nonlinear MAC results caused by analog processing
 - PVT variation impacts on bitline voltage
- ADC area/power overhead
- Limited reconfigurability

[Biswas, JSSC'19]

- Disturbance during MAC operation
- Bit cell area
- Narrow dynamic range for linearity
- Limited precision
- ADC area/power overhead
 - Multiple DACs and ADCs
 - Leading to energy/area overhead
- Limited reconfigurability

- Disturbance during MAC operation
- Bit cell area
- Narrow dynamic range for linearity
- Limited precision
- ADC area/power overhead
- Limited reconfigurability
 - Fixed input, weight, and output
 - Difficult to reconfigure due to analog processing

Outline

- Introduction
- Computing-in-memory Basics and Challenges
- State-of-the-arts Computing-in-memory
 - Analog CIM
 - Digital CIM
 - ReRAM CIM
- Summary

Accumulate using Pull-Up/Down Drivers

- 'Pull-up' and 'Pull-down' resistance determined by cell data
- Bitline voltage dependency on 'pull-up' and 'pull-down' resistance distribution
- Wide bitline swing at the cost of short circuit current

Accumulate using Pull-Up/Down Drivers

- Nonlinear relationship between MAC result and bitline voltage
- Nonlinearity dependency on supply voltage
- Nonlinear reference voltages for linear ADC

Differential Accumulation

[Kim, A-SSCC'19]

ADC Using Replica Bitcells

- Reference voltage generate by replica bitcells
- Better linearity and variation tolerance

[Kim, A-SSCC'19]

Current-based Accumulation

- Decoupled 8T SRAM cell for disturb-free MAC operation
- Differential bitline for MAC operation
- Combined cell current is converted to bitline voltage

[Yu, CICC'20]

Current-based Accumulation

- Lower core supply voltage for constant unit current (I_{unit})
- Limited bitline dynamic range (~200 mV) for linearity
- RWL pulse width control for target dynamic range

Bitcell-based Column ADC

- 32 replica bit cells for sweeping reference
- 1-5 bit output precision controlled by # of cycles
- TH[0]: sense amplifier output with highest reference

Bitcell-based Column ADC

- Incrementing reference by writing more '1s' in the replica bitcells
- TH[2]: sense amplifier output with lower reference
- Digitized output generation using sense amplifier output over cycles

Measurement Summary

- Summary and Comparison
 - Cycle-based reconfigurable output precision
 - Low voltage operation for energy-constrained IoT devices

Process	65nm
Supply Voltage	0.8V (RWL/PCH) /0.45V (SRAM)
Operating Frequency	200/400MHz
Bitcell	8T SRAM
Bitcell Size	1.83x1.83µm²
Array Size	128 x 128 (16K)
Efficiency (1bit OP)	2.04fJ @ 200M 1.99fJ @ 400M
ML Algorithm	MLP (2-layer) 784-128-128-10
Dataset /Accuracy	MNIST/96.2% (-0.4% vs. baseline)

	SOVC'16 [2]	ISSCC'18 [3]	SOVT'18 [4]	This Work
Technology	130nm	65nm	65nm	65nm
Bitcell	6T SRAM	10T SRAM	12T SRAM	8T SRAM
Accumulation	Current-Mode	Voltage-Mode	Voltage-Mode	Current-Mode
Array Size	128x128	64x256	256x64	128x128
Input/Out. Bit#	5/1	6/6	1.59/3.46	1/1-5
Weight Bit #	1	1	1	1
Energy-Efficiency [TOPS/W]	11.5	51.3	139	490-15.8**
# ADCs/Neurons	N/A	16/256	1/64	128/128
ML Algotithm	SVM	CNN	MLP	MLP
ML Dataset	MNIST	MNIST	MNIST	MNIST
Accuracy	90%	98%	98.3%	96.2%*

*Accuracy based-on MC (1K runs) sim. results (σ =6.35mV) **1-5b (1-31cycles/OP), 200MHz

[Yu, CICC'20]

Charge Sharing vs Capacitive Coupling

- Analog MAC result using either charge-sharing or capacitive-coupling
- Unit capacitor implementation using metal layers

Accumulation Using Charge-Sharing

- During accumulation, all the unit capacitors are connected to the shared bitline.
- Distributed unit capacitors generate averaged bitline voltage.

Accumulation Using Capacitive Coupling

- Charge redistribution through capacitive coupling
- Analog MAC result generated through a simple capacitive divider

Bitcell Layouts with Unit Capacitor

- Minimizing area overhead by implementing capacitors on top of transistors
- Area overhead dominated by additional switches
- MOMCAP: 1~2fF per bitcell area
- MOSCAP: for higher capacitance

[Valavi, JSSC'19]

[Jiang, ESSCIRC'19]

Metal

RWL

port

Analog Computing-in-Memory: Summary

• Pros

- High energy-efficiency by minimizing data transfer between memory and Pes
- Massive parallelism for achieving high throughput

Cons

- Significant power & area overhead in DAC/ADC
- Limited precision due to analog MAC result
- Limited reconfigurability
- Advanced Techniques
 - Decoupled bitcell structure for removing disturbance
 - Capacitive bitcell for improving linearity in MAC

Outline

- Introduction
- Computing-in-memory Basics and Challenges
- State-of-the-arts Computing-in-memory
 - Analog CIM
 - Digital CIM
 - ReRAM CIM
- Summary

Digital Computing-In-Memory

- No degradation in Precision
- Fully Reconfigurable Weights/Inputs
 - By changing column MAC size/operation cycles
- Bit-Serial Computation
 - Reduced hardware area
 - Throughput/latency issue mitigated by parallelism
- Unique Number Representation
 - Two's complement & binary-weighted signed number

Digital CNN Accelerator

- Eyeriss: on of the first digital CNN accelerators
- Processing elements implemented with digital circuits
- MAC operation in the digital domain: no accuracy degradation

[Chen, ISSCC'16]

[Kim, ESSCIRC'19]

Analog CIM vs. Digital CIM

- Digital approach to avoid inaccuracy
- Massively parallel MAC operation to enable weight/data reuse for energy saving
- Energy-efficiency MAC operation by bit-serial multiply/ parallel adder

Digital CIM Macro Architecture

- Fixed weight precision (4bit) and adder-tree
 - Simpler digital computing-in-memory macro
 - Higher parallelism (but less reconfigurability and density is low)

Digital CIM Array Circuit

- 6T SRAM bitcell for weight storage
- NOR for 1-bit multiplier
- NOR output sent to adder tree for accumulation

DIMC Macro Architecture

- Macro size: 256x64
- Perform a binary vector-matrix dotproduct in one cycle
- A column integrates:
 - 256 binary multiply cells
 - 16 approximate compressors
 - One 16-input adder tree
 - One shift accumulator
- Compressor: small accuracy degradation for high area efficiency

[Wang, ISSCC'22]

- Full Digital Implementation: Free from analog variation and ADC overhead.
- Area/Energy Efficiency Comparable to Analog Accelerators

[Kim, ESSCIRC'19]

- Bitcell Configuration
 - Weight Enable = 'High': XOR enable
 - Carry Select = 'High': Carry-in from upper bitcell
- Bitcell Mode: Multiple-and-Accumulate (MAC) & Accumulate-only
- Reconfigurable Column-MAC with serialized input

16×128

[Kim, ESSCIRC'19]

5×128

• Reconfigurability

- Higher energy efficiency at lower bit-precision
- Energy-aware bit-precision control in IoT devices

Reconfigurability	1-16b Weight / 1-16b Input			
Bitcell & Register	128×128 Bitcell Array with 16 Register Columns			
Bit-Precision**	1b/1b 1b/16b 16b/1b 16b/16b			
Operation Cycles	1	16	1	16
Column MACs	16×128 16×128 5×128 5×128			
Max Frequency	138MHz	138MHz	75.8MHz	75.8MHz
Latency	0.12µs	1.92µs	0.22µs	3.59µs
Throughput	567GOPS	35.4GOPS	97GOPS	6.1GOPS
Energy Efficiency	156TOPS/W	9.7TOPS/W	22TOPS/W	1.4TOPS/W

*Simulated (65nm, TT, 0.8V, 50°C) **Bit-precision setting (Weight/Input)

[Kim, ESSCIRC'19]

Measurement Summary

	[3]Envision ISSCC'17	[5]UNPU ISSCC'18	[7] VLSI'18	This Work
Technology	28nm	65nm	14nm	65nm
Supply Voltage	0.65-1.1V	0.63-1.1V	0.28-0.9V	0.6-0.8V
Multiply Precision	1-16/N bit (N=1,2,4)	1-to-16bit	FP16b INT8/16b	1-to-16bit
Accumulate Precision	48/N bit	32bit	FP32b INT24/48b	8-to-23bit
Reconfigurability	Reconfig. Multiplier	Bit-Serial	Fixed Bits (8,16,24,48)	Column MAC Bit-Serial
MAC Array	N×256	12×12	4×4	16×128(1b) 5×128(16b)
MAC Area [µm²]	N/A	N/A	1480	84.2(1b) 242.1(16b)
Energy per MAC [pJ/MAC]	N/A	0.055(1b) 1.26(16b)	N/A	0.017(1b) 0.78(16b)
Min. Energy Eff. [TOPS/W]	0.26	3.08(16b)	0.55(16b)	2.06(16b)
Max. Energy Eff. [TOPS/W]	10	50.6(1b)	11.3(8b)	117.3(1b)

Die micrograph

[Kim, ESSCIRC'19]

Comparison: Analog PIM vs Digital PIM

Analog PIM

- High energy efficiency
- High throughput with massive parallelism
- Data Conversion overhead
- Limited reconfigurability
- Limited output precision

Digital PIM

- High output precision
- Good reconfigurability
- Lower performance
- Lower energy efficiency
- Large bitcell size and low density
- Lower throughput than analog PIM

Outline

- Introduction
- Computing-in-memory Basics and Challenges
- State-of-the-arts Computing-in-memory
 - Analog CIM
 - Digital CIM
 - ReRAM CIM
- Summary

Challenges in ReRAM CIM

[Chen, ISSCC'18]

- Large variations in resistance
- Non-zero bitline current for data '0' after multiplication
- Overlap between MAC values for small sensing margin

Input: WL (I N)	Weight (W)	Product (INxW)	I _{MC}
0	0 (HRS)	0	0
0	1 (LRS)	0	0
1	1 (LRS)	1	I _{LRS}
1	0 (HRS)	0	I _{HRS}

Input-aware Dynamic Reference

[Chen, ISSCC'18]

- Input-aware reference current
- Reference current separation
- Input aware replica rows

Serial-Input Non-Weighted Product

[Xue, ISSCC'19]

- Multibit weight storage in 1T1R cells
 - Non-weighted current accumulation in cell array
 - Peripheral circuits deal with weighted values

Positive Weight Group			
МСм	MC∟	Weight value(W)	
LRS(+2)	LRS(+1)	+3	
LRS(+2)	HRS(0)	+2	
HRS(0)	LRS(+1)	+1	
HRS(0)	HRS(0)	0	

Negative Weight Group			
МСм	MC∟	Weight value(W)	
HRS(0)	HRS(0)	0	
HRS(0)	LRS(-1)	-1	
LRS(-2)	HRS(0)	-2	
LRS(-2)	LRS(-1)	-3	

Serial-Input Non-Weighted Product

[Xue, ISSCC'19]

- Down-scaling current mirror ratio
 - Process 2-bits weight values
 - Reduce summation current range and read-path current

Serial-Input Non-Weighted Product

[Xue, ISSCC'19]

- SINWP Sampler and Combiner
 - Phase1: sample MAC of IN[0]
 - Phase2: combine MACs of IN[1] and IN[0]
 - Current subtraction with reduced range

Summary

- Neural Networks have promising opportunities in various energyconstrained smart applications.
- Computing-in-Memory is a critical research area for improving energy efficiency of neural networks by orders of magnitude.
- Analog and digital computing-in-memory designs have its own advantages and limitations.
- Computing-in-memory using emerging non-volatile memory is promising in energy-constrained IoT applications.
- Computing-in-memory design is not mature yet and needs more comprehensive research.

References

- A. Biswas and A. P. Chandrakasan, "CONV-SRAM: An energy-efficient SRAM with in-memory dot-product computation for low-power convolutional neural networks," IEEE JSSC, vol. 54, no. 1, pp. 217–230, Jan. 2019
- V. Sze, "Efficient Processing of Deep Neural Network: from Algorithms to Hardware Architectures," in Tutorial, 35th Conference on Neural Information Processing Systems (NIPS), Dec. 2019.
- M. Horowitz, "Computing's energy problem (and what we can do about it)," ISSCC, pp. 10-14, 2014.
- Y. -H. Chen et al., "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks," ISSCC, pp. 262-263, 2016.
- L. Deng, et al., "Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey," in Proceedings of the IEEE, vol. 108, no. 4, pp. 485-532, April 2020.
- J.-Y. Kim, B. Kim and T. Kim, "Revolutionizing AI Hardware with Processing-in-Memory: From Architectures to Circuits," in Tutorial, IEEE ISCAS, May 2021
- W. -H. Chen et al., "A 65nm 1Mb nonvolatile computing-in-memory ReRAM macro with sub-16ns multiply-and-accumulate for binary DNN AI edge processors," ISSCC, pp. 494-496, 2018.
- Q. Dong et al., "A 351TOPS/W and 372.4GOPS Compute-in-Memory SRAM Macro in 7nm FinFET CMOS for Machine-Learning Applications," ISSCC, pp. 242-243, Feb. 2020.

References

- X. Si et al., "A Twin-8T SRAM Computation-in-Memory Unit-Macro for Multibit CNN-Based AI Edge Processors," IEEE JSSC, vol. 55, no. 1, pp. 189-202, Jan. 2020.
- Z. Jiang et al., "C3SRAM: In-Memory-Computing SRAM Macro Based on Capacitive-Coupling Computing," ESSCIRC, pp. 131-134, Sep. 2019.
- S. Yin et al., "XNOR-SRAM: In-Memory Computing SRAM Macro for Binary/Ternary Deep Neural Networks," JSSC, vol. 55, no. 6, pp. 1733-1743, June 2020.
- C. Yu et al., "A 16K Current-Based 8T SRAM Compute-In-Memory Macro with Decoupled Read/Write and 1-5bit Column ADC," CICC, pp. 1-4, Apr. 2020.
- M. Kang et al., "A Multi-Functional In-Memory Inference Processor Using a Standard 6T SRAM Array," JSSC, vol. 53, no. 2, pp. 642-655, Feb. 2018.
- J. Zhang, Z. Wang, and N. Verma, "In-memory computation of a machine-learning classifier in a standard 6T SRAM array," JSSC, vol. 52, no. 4, pp. 915–924, Apr. 2017.
- Q. Liu et al., "A Fully Integrated Analog ReRAM Based 78.4TOPS/W Compute-In-Memory Chip with Fully Parallel MAC Computing," ISSCC, pp. 500-502, 2020.
- H. Kim, Q. Chen and B. Kim, "A 16K SRAM-Based Mixed-Signal In-Memory Computing Macro Featuring Voltage-Mode Accumulator and Row-by-Row ADC," A-SSCC, pp. 35-36, Nov. 2019.

References

- C. Yu et al., "A Zero-Skipping Reconfigurable SRAM In-Memory Computing Macro with Binary-Searching ADC," ESSCIRC, pp. 131-134, 2021.
- H. Valavi et al., "A 64-Tile 2.4-Mb In-Memory-Computing CNN Accelerator Employing Charge-Domain Compute," JSSC, vol. 54, no. 6, pp. 1789-1799, June 2019.
- Y. Chih et al., "An 89TOPS/W and 16.3TOPS/mm2 All-Digital SRAM-Based Full-Precision Compute-In Memory Macro in 22nm for Machine-Learning Edge Applications," ISSCC, pp. 252-254, Feb. 2021.
- D. Wang et al., "DIMC: 2219TOPS/W 2569F2/b Digital In-Memory Computing Macro in 28nm Based on Approximate Arithmetic Hardware," ISSCC, pp. 266-268, 2022.
- W. -H. Chen et al., "A 65nm 1Mb non-volatile computing-in-memory ReRAM macro with sub-16ns multiply-andaccumulate for binary DNN AI edge processors," ISSCC, Feb. 2018, pp. 494-496
- C. -X. Xue et al., "A 1Mb Multibit ReRAM Computing-In-Memory Macro with 14.6ns Parallel MAC Computing Time for CNN Based AI Edge Processors," ISSCC, Feb. 2019, pp. 388-390