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Machine Learning for Edge Devices

• Tiny machine learning for IoT devices has wide applications.
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[Source: eBizSolutions]



Ubiquitous IoT Devices and Embedded ML

• IoT devices and embedded ML models increasingly ubiquitous in the world
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[MIT HAN Lab]



Machine Learning for Edge Computing

• Face Recognition

• Speech Recognition

• Image Classification

• Object Detection

• High Power Consumption

− AlphaGo (1MWatt) vs Human (20W)
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[Biswas, ISSCC’18]

• Faster Local Decisions

• Less Communication

• More Secure (local data)

• Requirements:
− Low power consumption

− Low storage capacity

− Real-time processing



Convolutional Neural Networks (CNNs)
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[Biswas, ISSCC’18]
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Popular DNN Models

• Larger and deeper DNN models: not suitable for IoT devices
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[Sze, NeurIPS’19]

Metrics LeNet-5 AlexNet VGG-16
GoogLeNet

(v1)
ResNet-50

EfficientNet -

B4 

Top-5 error (ImageNet) n/a 16.4 7.4 6.7 5.3 3.7

Input Size 28x28 227x227 224x224 224x224 224x224 380x380 

# of CONV Layers 2 5 16 21 (depth) 49 96 

# of Weights 2.6k 2.3M 14.7M 6.0M 23.5M 14M 

# of MACs 283k 666M 15.3G 1.43G 3.86G 4.4G 

# of FC layers 2 3 3 1 1 65

# of Weights 58k 58.6M 124M 1M 2M 4.9M 

# of MACs 58k 58.6M 124M 1M 2M 4.9M 

Total Weights 60k 61M 138M 7M 25.5M 19M 

Total MACs 341k 724M 15.5G 1.43G 3.9G 4.4G 

Reference Lecun, 

PIEEE 1998 

Krizhevsky, 

NeurIPS 2012 

Simonyan, 

ICLR 2015 

Szegedy, 

CVPR 2015 

He, 

CVPR 2016 

Tan, 

ICML 2019 



Conventional Computing Architecture
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• Von Neumann Architecture: data 
movement across memory layers 
and system bus

− Long latency, high power consumption, 
hardware cost

[M. Horowitz, ISSCC’14]
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Architecture vs. Energy Efficiency

• Von-Neumann architecture: computation bottleneck and excessive energy
consumption due to memory access.

• Computing-in-memory: high energy efficiency and high performance with 
massive parallelism
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Computing-in-Memory: Basics

• Computation of MACs inside of memory

• Features
− Activation of multiple rows

− Analog bitline voltage or current for representing MAC results

− Digitization using Analog-to-digital converters
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[Kim, ISCAS’21 Tutorial] [Chen, ISSCC’18]



Synapse: SRAM Bitcell

• A (binary) synapse can be mapped to a single SRAM bitcell
− Multiplication in the SRAM bitcell
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[Kim, ISCAS’21 Tutorial]



Synapse: SRAM Bitcell

• A neuron is mapped to a column of bitcells
− A dot-product between input and weight & an activation is performed
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[Kim, ISCAS’21 Tutorial]



Synapse: SRAM Bitcell

• A feedforward neural network is mapped to entire SRAM macro
− Many parallel dot-products = a matrix (weight) vector (input) multiplication
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[Kim, ISCAS’21 Tutorial]



Binary MAC Operation in 6T SRAM Cell
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BL/BLb are pre-charged to VDD BL/BLb are pre-charged to VDD BL/BLb are pre-charged to VDD 

•Low 

Q Qb 1 0 0 1

OFF                                        OFF ON ON ON ON 

ON ON                    OFF 

VDD                              X=0                VDD                         VDD X=1 & W=+1    VDD - V                      VDD -  V X=1 & W=-1        VDD 

• Differential bitlines
− Input X = 0/1 and weight W = -1/+1

− Three different voltage differences: 0 V, V, and -V

X

W

X              W +1 -1

0 0 0

1 -V V



Binary MAC Operation in Single-ended BL
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[Dong, ISSCC’20]

• Single-ended bitline
− Input X = 0/1 and weight W = 0/1

− Two different voltage differences: 0 V and V
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Computing-in-Memory: Challenges

• Disturbance during MAC operation

• Bit cell area

• Narrow dynamic range for linearity

• Limited precision

• ADC area/power overhead

• Limited reconfigurability
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Computing-in-Memory: Challenges

• Disturbance during MAC operation
− Internal nodes affected by bitline voltage

− Data flip due to multiple enabled SRAM cells 
and a wide bitline voltage range

• Bit cell area

• Narrow dynamic range for linearity

• Limited precision

• ADC area/power overhead

• Limited reconfigurability
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[Si, JSSC’20]



Computing-in-Memory: Challenges

• Disturbance during MAC operation

• Bit cell area
− Decoupled bitcells for removing disturbance

− Additional TRs increasing area overhead

• Narrow dynamic range for linearity

• Limited precision

• ADC area/power overhead

• Limited reconfigurability
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[Yin, JSSC’20]

[Jiang, ESCIRC’19]

[Yu, CICC’20]



Computing-in-Memory: Challenges

• Disturbance during MAC operation

• Bit cell area

• Narrow dynamic range for linearity
− Nonlinear voltage step depending on MAC value

− Limited dynamic range: 200~300mV

• Limited precision

• ADC area/power overhead

• Limited reconfigurability
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[Dong, ISSCC’20]

[Yu, CICC’20]

[Kang, JSSC’18]



Computing-in-Memory: Challenges

• Disturbance during MAC operation

• Bit cell area

• Narrow dynamic range for linearity

• Limited precision
− Nonlinear MAC results caused by analog processing

− PVT variation impacts on bitline voltage

• ADC area/power overhead

• Limited reconfigurability
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Computing-in-Memory: Challenges

• Disturbance during MAC operation

• Bit cell area

• Narrow dynamic range for linearity

• Limited precision

• ADC area/power overhead
− Multiple DACs and ADCs

− Leading to energy/area overhead

• Limited reconfigurability
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[Biswas, JSSC’19]

[Liu, ISSCC’20]



Computing-in-Memory: Challenges

• Disturbance during MAC operation

• Bit cell area

• Narrow dynamic range for linearity

• Limited precision

• ADC area/power overhead

• Limited reconfigurability
− Fixed input, weight, and output

− Difficult to reconfigure due to analog processing
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[Biswas, JSSC’19]

[Dong, ISSCC’20]
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Accumulate using Pull-Up/Down Drivers

• ‘Pull-up’ and ‘Pull-down’ resistance determined by cell data

• Bitline voltage dependency on ‘pull-up’ and ‘pull-down’ resistance distribution

• Wide bitline swing at the cost of short circuit current
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[Yin, JSSC’20]



Accumulate using Pull-Up/Down Drivers

• Nonlinear relationship between MAC result and bitline voltage

• Nonlinearity dependency on supply voltage

• Nonlinear reference voltages for linear ADC
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[Yin, JSSC’20]



Differential Accumulation

• Nonlinear single-ended 
accumulation

• Pseudo differential accumulation

• Improved linearity

• Reference voltage generated by 
replica bitcells
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[Kim, A-SSCC’19]



ADC Using Replica Bitcells

• Reference voltage generate by 
replica bitcells

• Better linearity and variation 
tolerance
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[Kim, A-SSCC’19]



Current-based Accumulation

• Decoupled 8T SRAM cell for disturb-free MAC operation

• Differential bitline for MAC operation

• Combined cell current is converted to bitline voltage
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[Yu, CICC’20]
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Current-based Accumulation

• Lower core supply voltage for constant unit current (Iunit)

• Limited bitline dynamic range (~200 mV) for linearity

• RWL pulse width control for target dynamic range

Slide 30

[Yu, CICC’20]



Bitcell-based Column ADC
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• 32 replica bit cells for sweeping reference 

• 1-5 bit output precision controlled by # of cycles

• TH[0]: sense amplifier output with highest reference

8T Bitcell

8T Bitcell

R[0]

R[31]

SA

Y

8T Bitcell

R[1]

[Yu, CICC’20]



Bitcell-based Column ADC
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• Incrementing reference by writing more ‘1s’ in the replica bitcells

• TH[2]: sense amplifier output with lower reference 

• Digitized output generation using sense amplifier output over cycles

[Yu, CICC’20]



Measurement Summary
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• Summary and Comparison
− Cycle-based reconfigurable output precision

− Low voltage operation for energy-constrained IoT devices

SOVC'16 [2]

Technology

Array Size

Bitcell

Input/Out. Bit#

Weight Bit #

Accuracy

ML Algotithm

ML Dataset

ISSCC'18 [3] SOVT'18 [4]

130nm

6T SRAM

128x128

5/1

1

11.5

SVM

MNIST

90%

65nm

10T SRAM

Accumulation

64x256

6/6

1

51.3

CNN

MNIST

98%

65nm

12T SRAM

256x64

1.59/3.46

1

139

MLP

MNIST

98.3%

*Accuracy based-on MC (1K runs) sim. results (σ=6.35mV) **1-5b (1-31cycles/OP), 200MHz

This Work

65nm

8T SRAM

128x128

1/1-5

1

490-15.8**

MLP

MNIST

96.2%*

Energy-Efficiency
[TOPS/W]

Current-Mode Voltage-Mode Current-ModeVoltage-Mode

# ADCs/Neurons N/A 16/256 1/64 128/128

[Yu, CICC’20]



Charge Sharing vs Capacitive Coupling
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• Analog MAC result using either charge-sharing or capacitive-coupling

• Unit capacitor implementation using metal layers

[Valavi, JSSC’19] [Jiang, ESSCIRC’19]

Bitcell with Charge-Sharing Bitcell with Charge-Coupling



Accumulation Using Charge-Sharing
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• During accumulation, all the unit capacitors are connected to the shared bitline.

• Distributed unit capacitors generate averaged bitline voltage.



Accumulation Using Capacitive Coupling
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• Charge redistribution through capacitive coupling

• Analog MAC result generated through a simple capacitive divider



Bitcell Layouts with Unit Capacitor
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• Minimizing area overhead by implementing capacitors on top of transistors

• Area overhead dominated by additional switches

• MOMCAP: 1~2fF per bitcell area

• MOSCAP: for higher capacitance

[Valavi, JSSC’19]

[Jiang, ESSCIRC’19][Sharma, ISCAS’21]

4fF



Analog Computing-in-Memory: Summary
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• Pros
− High energy-efficiency by minimizing data transfer between memory and Pes

− Massive parallelism for achieving high throughput

• Cons
− Significant power & area overhead in DAC/ADC

− Limited precision due to analog MAC result

− Limited reconfigurability

• Advanced Techniques
− Decoupled bitcell structure for removing disturbance

− Capacitive bitcell for improving linearity in MAC
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Digital Computing-In-Memory
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• No degradation in Precision

• Fully Reconfigurable Weights/Inputs
− By changing column MAC size/operation cycles

• Bit-Serial Computation
− Reduced hardware area

− Throughput/latency issue mitigated by parallelism

• Unique Number Representation
− Two’s complement & binary-weighted signed number



Digital CNN Accelerator
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• Eyeriss: on of the first digital CNN accelerators

• Processing elements implemented with digital circuits

• MAC operation in the digital domain: no accuracy degradation

[Kim, ESSCIRC’19]
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Analog CIM vs. Digital CIM
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• Digital approach to avoid 
inaccuracy

• Massively parallel MAC 
operation to enable weight/data 
reuse for energy saving

• Energy-efficiency MAC operation 
by bit-serial multiply/ parallel 
adder

[Chih, ISSCC’21]



Digital CIM Macro Architecture
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• Fixed weight precision (4bit) and adder-tree
− Simpler digital computing-in-memory macro 

− Higher parallelism (but less reconfigurability and density is low)

[Chih, ISSCC’21]



Digital CIM Array Circuit
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• 6T SRAM bitcell for weight storage

• NOR for 1-bit multiplier

• NOR output sent to adder tree for accumulation

[Chih, ISSCC’21]



DIMC Macro Architecture
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• Macro size: 256x64

• Perform a binary vector-matrix dot-
product in one cycle

• A column integrates:
− 256 binary multiply cells

− 16 approximate compressors

− One 16-input adder tree

− One shift accumulator

• Compressor: small accuracy 
degradation for high area efficiency

[Wang, ISSCC’22] 



Bit-Serial Digital Computing-in-Memory
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• Full Digital Implementation: Free from analog variation and ADC overhead.

• Area/Energy Efficiency Comparable to Analog Accelerators

[Kim, ESSCIRC’19]
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Bit-Serial Digital Computing-in-Memory

Slide 47

• Operation diagram
[Kim, ESSCIRC’19]
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Bit-Serial Digital Computing-in-Memory
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• Bitcell Configuration
− Weight Enable = ‘High’: XOR enable

− Carry Select = ‘High’: Carry-in from upper bitcell

• Bitcell Mode: Multiple-and-Accumulate (MAC) & Accumulate-only

• Reconfigurable Column-MAC with serialized input
Weight Enable: High

Carry Select: Low

Weight Enable: Low

Carry Select: High

[Kim, ESSCIRC’19]



Bit-Serial Digital Computing-in-Memory
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• Reconfigurability
− Higher energy efficiency at lower bit-precision

− Energy-aware bit-precision control in IoT devices

[Kim, ESSCIRC’19]

Bitcell & Register 128×128 Bitcell Array with 16 Register Columns

Bit-Precision**

Column MACs 16×128

Max Frequency 138MHz

Latency 0.12µs

Throughput 567GOPS

Energy Efficiency 156TOPS/W

Reconfigurability 1-16b Weight / 1-16b Input

1b/1b

*Simulated (65nm, TT, 0.8V, 50°C) **Bit-precision setting (Weight/Input)

16×128

138MHz

1.92µs

35.4GOPS

9.7TOPS/W

1b/16b

5×128

75.8MHz

0.22µs

97GOPS

22TOPS/W

16b/1b

5×128

75.8MHz
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6.1GOPS

1.4TOPS/W

16b/16b

Operation Cycles 1 16 1 16
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Measurement Summary
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[Kim, ESSCIRC’19]

[3]Envision
ISSCC'17

[5]UNPU
ISSCC'18

[7]
VLSI'18

Technology

MAC Array

Reconfigurability

This Work

MAC Area [µm2]

Multiply
Precision

Energy per MAC
[pJ/MAC]

Min. Energy Eff.
[TOPS/W]

65nm

1-to-16bit

Accumulate
Precision 8-to-23bit

14nm

FP16b
INT8/16b

4×4

FP32b
INT24/48b

Column MAC
Bit-Serial

Fixed Bits
(8,16,24,48)

16×128(1b)
5×128(16b)

Max. Energy Eff.
[TOPS/W]

84.2(1b)
242.1(16b)

1480

0.26

10

0.55(16b)

11.3(8b)

2.06(16b)

117.3(1b)

0.28-0.9V 0.6-0.8VSupply Voltage

65nm

0.63-1.1V

1-to-16bit

12×12

Bit-Serial

32bit

N/A

0.055(1b)
1.26(16b)

3.08(16b)

50.6(1b)

0.017(1b)
0.78(16b)

N/A

28nm

0.65-1.1V

1-16/N bit
(N=1,2,4)

48/N bit

N×256

Reconfig.
Multiplier

N/A

N/A

0
.3

2
m

m

0.71mm

Bitcell Array
128×128

Die micrograph



Comparison: Analog PIM vs Digital PIM

Analog PIM

• High energy efficiency

• High throughput with massive 
parallelism

• Data Conversion overhead

• Limited reconfigurability

• Limited output precision
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Digital PIM

• High output precision

• Good reconfigurability

• Lower performance

• Lower energy efficiency

• Large bitcell size and low density

• Lower throughput than analog PIM
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Challenges in ReRAM CIM
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• Large variations in resistance

• Non-zero bitline current for data ‘0’ after multiplication

• Overlap between MAC values for small sensing margin

[Chen, ISSCC’18]

Input: WL (I

N)

Weight 

(W)

Product

(INxW)
IMC

0 0 (HRS) 0 0

0 1 (LRS) 0 0

1 1 (LRS) 1 ILRS

1 0 (HRS) 0 IHRS



Input-aware Dynamic Reference
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• Input-aware reference current

• Reference current separation

• Input aware replica rows

[Chen, ISSCC’18]



Serial-Input Non-Weighted Product
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• Multibit weight storage in 1T1R cells
− Non-weighted current accumulation in cell array

− Peripheral circuits deal with weighted values

[Xue, ISSCC’19]



Serial-Input Non-Weighted Product
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• Down-scaling current mirror ratio
− Process 2-bits weight values

− Reduce summation current range and read-path current

[Xue, ISSCC’19]



Serial-Input Non-Weighted Product
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• SINWP - Sampler and Combiner
− Phase1: sample MAC of IN[0]

− Phase2: combine MACs of IN[1] and IN[0]

− Current subtraction with reduced range

[Xue, ISSCC’19]



Summary
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• Neural Networks have promising opportunities in various energy-
constrained smart applications. 

• Computing-in-Memory is a critical research area for improving 
energy efficiency of neural networks by orders of magnitude.

• Analog and digital computing-in-memory designs have its own 
advantages and limitations.

• Computing-in-memory using emerging non-volatile memory is 
promising in energy-constrained IoT applications.  

• Computing-in-memory design is not mature yet and needs more 
comprehensive research.
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