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Research @ CAD Group in Carleton

• High-Speed Interconnects, 

• Signal & Power Integrity

• Circuit Simulation

• Timing Analysis

• Model-Order Reduction Algorithms

• Variational Analysis

• Optimization

• Mixed Digital, Analog, EM, RF Analysis

• Parallel Algorithms

• Neural Networks

• ……

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Design Trends

• Faster Devices

• Compact Products

• Multi-Function

• Less Clutter

• Use Less Power

• High-Frequency

• High-Density

• Wireless

• Low-Power

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Agenda

• Emerging Product Trends

• Interconnect Scaling

• Signal Integrity Issues

• Interconnect Hierarchy

• What is a “High-Speed Interconnect”?

• Interconnect Models and Simulation Challenges

• Advanced/Recent Models

• Conclusions

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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High-Speed Design Issues

CROSSTALK
INTERCONNECT DELAY

ATTENUATION

RADIATION

EMI 
SUSCEPTIBILITY

THERMAL NOISE

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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High-Speed  EffectsCurrent Design Trends

Design Modeling Simulation Optimization

Impact of  Signal Integrity Issues

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"



16

Agenda

• Emerging Product Trends

• Interconnect Scaling: Trend & Issues

• High-Speed Design Issues

• Interconnect Hierarchy

• What is a “High-Speed Interconnect”?

• Interconnect Models and Simulation Challenges

• Advanced/Recent Models

• Conclusions

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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© R. Achar, “Meeting the Signal Integrity Challenges", STM, New Delhi, Jan 2014

Moore’s Law on Density/Speed

Source: Intel, www.intel.com
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Evolution of Density and Frequency

In a Billion Transistor Design, there could be 

multiple billions of interconnects, many of which 

do not scale in performance 

➔ High-Speed Signal Propagation Issues

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Transistor, Interconnect – Scaling & SI Issues

W

L

tox

Technology Scaling:

➔ Scale W, L & tox by a factor of ‘S’
© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Parameter Relation Scaling 

Factor

Dimensions W, L, tox 1/S

Voltages VDD, VT 1/S

Currents IDS 1/S

Power Dissipation/Gate P = IV 1/S2

Area Per Device A = WxL 1/S2

Power Dissipation Density P/A 1

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"

Transistor, Interconnect – Scaling & SI Issues
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Transistor - Ideal Scaling

Parameter Relation Scaling 

Factor

Gate Capacitance Cg = (εox/tox)(W x L) 1/S

Transistor On Resistance Rtr = VDD / IDS 1

Intrinsic Gate Delay Ƭg= Rtr Cg 1/S

Impact on Transistor Related Delays

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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A look at Interconnects…..

wint

Lint

wsp

interconnect

tox

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Scaling: Local Interconnections

Parameter Relation Scaling 

Factor

Cross-sectional Dimensions Wint, Hint, Wsp, Tint 1/S

Capacitance Per Unit Length Cint α (εox)(Wint/tox) 1

Resistance Per Unit Length Rint =  ζint / (Wint x Hint) S2

RC Time Constant per unit 

Length

Rint x Cint S2

Local Interconnection Length Lint 1/S

Total Local Interconnection RC 

Delay

Ƭ= (Rint Cint) L
2

int 1

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Scaling: Global Interconnections

Parameter Relation Scaling Factor

Die Size Sc

Global Interconnection 

Length

Lglob Sc

Global Interconnections 

RC Delay

Ƭ= (Rint Cint) L
2

glob S2S2
c

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Agenda

• Emerging Product Trends

• Interconnect Scaling: Trend & Issues

• High-Speed Design Issues

• Interconnect Hierarchy

• What is a “High-Speed Interconnect”?

• Interconnect Models and Simulation Challenges

• Advanced/Recent Models

• Conclusions

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Attenuation

Finite resistance 

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Interconnect Effects: Delay

50W

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Reflection/Ringing

20W

Zc
50W

Mismatched

Load

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Agenda

• Emerging Product Trends

• Interconnect Scaling: Trend & Issues

• High-Speed Design Issues

• Interconnect Hierarchy

• What is a “High-Speed Interconnect”?

• Interconnect Models and Simulation Challenges

• Advanced/Recent Models

• Conclusions

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Ubiquitous Interconnects

DIE

Package

BOARD

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Role of the Package

• Distribute power and signals,
• Dissipate the heat generated by the IC.
• Mechanical support for the chip,

Issues to tackle, parasitic elements such as:

- capacitive coupling between connections or
leads,

- inductance of the connections or leads,
- resistance of the connections

➔ The values of the parasitic elements depend
on the package layout and structure,

➔ Have Significant Impact on the Package
Performance.

32
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Role of the Package

• The design and construction of packages 
vary significantly, but most of them are 
fabricated either from plastic or ceramic 
materials. 

• The chip to package interconnects can be 
divided into three main categories:

Wire-bond (WB)
Tape-automated-bond (TAB)
Flip-chip 

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Package – Wire Bond
Wire-bond (WB): Although the oldest 
method, wire-bonding is still the 
dominant packaging method used 
today. 

➔ Due to the self-inductance and mutual inductance of the wires, noise 
on the PDN and crosstalk between adjacent signals might occur.

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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LgVg_total
+

-

Vi1

CL1

Vi2

CL2 CLN

ViN

On-chip VCC bus

On-chip ground bus

On-board VCC bus

On-board ground bus

CHIP Board

Ground Bounce

35© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"

Vg = Lg x d [idischarge(t)_total]
dt
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Flip Chip Technology

-Uniform Distribution of Power
-Shorter contacts: reduced Parasitics
-More Widely used 

Package

“Flipped ”DIE

Pads

VDD/Gnd
Contacts

36© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Agenda

• Emerging Product Trends

• Interconnect Scaling: Trend & Issues

• High-Speed Design Issues

• Interconnect Hierarchy

• What is a “High-Speed Interconnect”?

• Interconnect Models and Simulation Challenges

• Advanced/Recent Models

• Conclusions

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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High-Speed!!

What is it??

d

• Time taken to travel through the interconnect  can no 

longer be neglected!!

• Interconnects can no more be treated as electrically 

short (→ d ≤  l/10)

• Need to start worrying about high-frequency effects 

when:

d ≥ l/10  → Electrically Long Interconnects
© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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What is a High-Speed Interconnect?

When??

for digital systems…. d

At higher frequencies, 

Interconnect length becomes

comparable to the Wavelength

l v

f

__
=

Frequency = 1GHz  ➔
v

f

__
l  1.51010

1109
= = 15cm

➔ d > 1.5cm
© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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© R. Achar, “Meeting the Signal Integrity Challenges", STM, New Delhi, Jan 2014

tr = 1ns

tr = 0.1ns

Time-Freq Relations

Sharper pulses contain 

higher frequency harmonics

f
max

0.35

tr

_____=
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tr = 0.1ns    ➔ fmax = 3.5GHz  →

f
max

0.35

tr

_____=

Sharper pulses contain 

higher frequency harmonics

➔ d < 4mmv

f

__
l  1.51010

3.5109
= ≈ 4cm

What is an High-Speed Interconnect?

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Agenda

• Emerging Product Trends

• Interconnect Scaling: Trend & Issues

• High-Speed Design Issues

• Interconnect Hierarchy

• What is a “High-Speed Interconnect”?

• Interconnect Models and Simulation Challenges

• Advanced/Recent Models

• Conclusions

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Modeling of Interconnects

Physical Description Electrical Description

L   C

R   G

Distributed effects?

Freq-depend. effects?

Models ?

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Interconnect Models

Physical

Electrical
F

re
q

u
e

n
c
y

Distributed TR Line

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Distributed Transmission Lines

• Distributed Transmission Lines

➔ Lossless, Lossy

➔ Single, Multiconductor

➔ Frequency Independent/ dependent

p.u.l. parameters 

(skin/proximity/edge effects)

➔ Uniform/Non-uniform

• Current Distribution Related Effects:

➔ Skin Effect

➔ Edge Effect

➔Proximity Effect

• Surface Roughness Effects

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Frequency Dependence of R & L Parameters

Frequency

L

R

Rdc

Lint + Lext

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Agenda

• Emerging Product Trends

• Interconnect Scaling: Trend & Issues

• High-Speed Design Issues

• Interconnect Hierarchy

• What is a “High-Speed Interconnect”?

• Interconnect Models and Simulation Challenges

• Advanced/Recent Models

• Conclusions

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Multi-Conductor Transmission Lines

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Mixed Frequency/Time Simulation

SPICE

Nonlinear Simulator

Time Domain Equations

b(t)F(x)Hx
t

x
W =++





H-S Interconnect

Telegrapher’s Equation

Freq-Domain Equations

0  I B(s)  V A(s) =+

Transient Analysis

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Lumped Segmentation - Large Circuit

Large

Circuit+
-

outV

Large CPU Cost

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Transient Simulation Issues

•Mixed Frequency/Time

• Complexity

• CPU time

• Memory

• Simulator Interface

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Macromodeling

• Lumped Segmentation 

• Method of Characteristics 

• Least-Square Optimization

• Chebeshev, Wavelet Polynomials

• Compact Finite Differences

• Integrated Congruent Transformation

• Matrix Rational Approximation

• Model-Order Reduction Methods….

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Discretization

xL xR

xGxC

xL xR

xGxC

xL xR

xGxC

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Lumped Models - Pi

Lumped LC

Lossless Line

L
C/2 C/2

Lumped RLGC 

Lossy Line

L

C/2 C/2

R

G/2 G/2

Lumped Cascaded

Lossless

Distributed Line

… … 

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"



56© R. Achar, “Meeting the Signal Integrity Challenges", CASS-DLP-UTAR, Dec.  2012

R= 35 Ω

R= 50 Ω

L=5nH/cm; 
C= 1pF/cm
D=10cm           Vout

200ps

1

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Distributed

Lumped

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Distributed

Lumped

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Transient Analysis with Distributed 
Interconnect

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Frequency Response of Lumped Models

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"



61© R. Achar, “Meeting the Signal Integrity Challenges", CASS-DLP-UTAR, Dec.  2012

Frequency Response: Lumped 
Model with Input Pulse Spectrum



62© R. Achar, “Meeting the Signal Integrity Challenges", CASS-DLP-UTAR, Dec.  2012

Transient Response
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© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Large CPU Cost

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"



65

Agenda

• Emerging Product Trends

• Interconnect Scaling: Trend & Issues

• High-Speed Design Issues

• Interconnect Hierarchy

• What is a “High-Speed Interconnect”?

• Interconnect Models and Simulation Challenges

• Advanced/Recent Models

➢ MRA, DEPACT

➢ WR+TP,  WR+TP+EMI

➢ Tabulated Data, Parallelization

• Conclusions
© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Possible Efficient Macromodeling Approaches

2) Matrix Rational Approximations

1) MoC based Algorithms

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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MoC based Algorithms

→ Efficient for Long Low  Loss Lines

→ Delay Extraction +  Rational Approximation

Difficulties

1) Coupled Lines:       Curve Fitting

n Lines     → (2n2 +n )  Tr. functions

Eg. 10 Lines   → 210   Tr.   functions

2) Does not Guarantee Passivity

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Problem faced…….

• Limited Bandwidth of Approximation

• Individual numerical fitting of parameters of a 

matrix function

• Loss of physical properties – such as passivity

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Stable but 

non-passive

Macromodel
➔

Passive

Termination

May result in an 

unstable total 

network

+

Importance of Passivity

•Error: Failure to Converge

•Error: Time Step Too Small – Abort

•Error: …………

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Unstable response

Time response of stable but nonpassive reduced model 
© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Passive

Macromodel

Passive

Termination

Asymptotically

stable

+

Passivity

Y(s) is passive iff

1)

2) ,0)]()([ ** + zsYsYz tt
Re(s)>0

)()( ** sYsY =

Y(s) is a positive real matrix

Ensuring passivity of the reduced 

Macromodel is a challenging task!!

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Defining the objectives…….

• Can we improve the bandwidth of approximation 

without facing ill-conditioning?

• Can we come up with a matrix based 

approximation without resorting to individual 

entity approximations?

• Can we do the approximation analytically without 

resorting to numerical curve fitting?

• Can we ensure the physical properties for the 

model?

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Agenda

• Emerging Product Trends

• Interconnect Scaling: Trend & Issues

• High-Speed Design Issues

• Interconnect Hierarchy

• What is a “High-Speed Interconnect”?

• Interconnect Models and Simulation Challenges

• Advanced/Recent Models

➢ MRA, DEPACT

➢ WR+TP,  WR+TP+EMC

➢ Tabulated Data, Parallelization

• Conclusions
© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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This is what we are approximating…….

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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1) Scalar Approximation

V(d)

I(d)

V(0)

I(0)

3) Passivity is guaranteed

2) Independent of PUL parameters
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→ Closed-Form Relations

Matrix Rational Approximation

4) Can achieve higher bandwidth
© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Approximation of Exponential Function
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© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Passivity??

Time response of stable but nonpassive reduced model 

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Theorem: Let the rational 

function of ex be:

Passivity Conditions


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e

IF the polynomial QN(x) is strictly Hurwitz* THEN

the rational matrix obtained by replacing the scalar x 
with the matrix Z=(D+sE)d  results in a passive 
transmission line macromodel 

*A polynomial with real positive coefficients and roots which are 
either negative or pairwise conjugate with negative real parts. 

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Example 1: Coupled Lossy TL

1.5pF
V

30W
1.5pF

30W

V1

V2

V3

V4

Length=10cm

Input: step response, rise time = 0.2 ns

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Example 1: Far End Active Line

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Performance Comparison

Simulations MRA  

(MNA size)

Lumped 

(MNA size)

MNA 

savings

Example 1 8281 48000 83%

Example 2 355 2 482 86%

Example3 (5cm) 914 6 002 85%

Example 3 

(20cm)

3 650 24 002 85%

Example 3 

(40cm)

7 298 80 002 91%

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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1pF

1pF

1pF

1pF

1pF

1pF

1pF

1pF

1pF

25W

25W

25W

25W

25W

25W

25W

25W

25W

5V

1pF

Output
Length = 15cm

Lossless line

5V

Example 3: Nonlinear Terminations

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Transient Responses

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Algorithm Total number 

of lumped 

sections

CPU time 
(SPARC Ultra 5-10) 

(seconds)

Conventional 

Lumped

300 3282

Proposed 31 315

CPU Comparison

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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How About Long Low-Loss Lines???

(Low Loss TL)*

MoC MRA

Time (s)Time (s)

4 463

50W

50W

Length=10m
V

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Why?  

Without Delay Extraction

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Macromodel: Objectives

2) Guaranteed Passivity

1) Closed Form

3) Delay Extraction

→ Large Number of Coupled Lines

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Agenda

Advanced Interconnect Modeling Methods

➢ MoC,  MRA

➢ DEPACT

➢ WR+TP, EMI

➢ Tabulated Data Macromodelling, Parallelization

Conclusions

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Delay Extraction - DEPACT

• Extracts pure delay components of 

equivalent circuit matrix

• Pure-delay components can be 

simulated with existing tline (T)

• Highly compact/passive macromodels

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Error Estimates

50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-4

M

N
o
rm

 o
f 

E
rr

o
r

Norm of Error vs. M

eq.1=[exp(A/2m)exp(B/m)exp(A/2m)]m

eq.2=[exp(B/2m)exp(A/m)exp(B/2m)]m
Modified Lie Formula – 2    

m

sB

m

A

m

sB

k eeeP 22=

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-4

M

N
o
rm

 o
f 

E
rr

o
r

Norm of Error vs. M

eq.1=[exp(A/2m)exp(B/m)exp(A/2m)]m

eq.2=[exp(B/2m)exp(A/m)exp(B/2m)]m

Average of eq.1 and eq.2           

Error Estimates

Average of Modified Lie Formula  1 and 2    

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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0.25pFV

50W
0.25pF

50W C1

C2

B11ns, 50W

1ns, 50W

50W

Open

B2

Example: Lossy Coupled TL

5cm, 20cm, 40cm 

Input: step response, rise time = 0.035 ns

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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IBM: Line 6 (40cm)

(32 sections)
(18 sections X 8)

(100 sections)

(17 sections X 25)
DEPACT

MRA

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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IBM: Line 6

Simulation DEPACT MRA Lumped

time (s) time (s) time (s)

5cm 0.89 4.16 32.4
20cm 2.47 25 292
40cm 4.32 74 4641

Computer: SUN Blade-1000 workstation with 900MHz

UltraSPARC-III CPU.

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Problem Addressed so far…….

• Limited Bandwidth of Approximation

• Individual numerical fitting of parameters of a 

matrix function

• Loss of physical properties – such as passivity

• Delay Extraction + Passivity

•➔ How about large coupled lines?

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"



97

Agenda

Advanced Interconnect Modeling Methods

➢ MoC, MRA, DEPACT

➢ WR+TP

➢ EMI

➢ Tabulated Data

Conclusions

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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CPU TimeNumber of lines

2 2.3 sec

32 78 sec

96 5315.6 sec

Large # of Coupled Lines: Traditional approaches

V

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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N (number of lines)

CPU Time 

(Seconds)

0 20 40 60 80 100 120
0

2000

4000

6000

8000

10000

Traditional 

approach

Average cost of simulating N-coupled lines circuit is 

proportional to N    , where               

Large # of Coupled Lines

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Direct Methods (L/U, F/B) Iterative Methods

→Sequential Process

→Fast

→Memory Inefficient

→Parallelizable

→Slow

→Memory Efficient

Combine both using➔ Waveform Relaxation 

In the literature……

+

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Transverse Partitioning

WR+TP: concept

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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WR + TP of Unexcited Lines- WR Sources

+

+

+

??

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Computation of WR Source
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TRANSVERSE PARTITIONING + WR

CPU TimeNumber of lines

96

TP

1.5 hours

V

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"



105

© R. Achar, “VLSI Interconnects and Signal Integrity", IIT-Khargpur, Dec. 2011

Electromagnetic Interference

Incident fields

Radiated fields
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© R. Achar, “VLSI Interconnects and Signal Integrity", IIT-Khargpur, Dec. 2011

EMI Analysis & High-Speed Interconnects

Physical description
SPICE simulationMacromodeling

Lumped circuit

Sources
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© R. Achar, “VLSI Interconnects and Signal Integrity", IIT-Khargpur, Dec. 2011

Conventional EMI Analysis: Large # of Coupled Lines

Coupling Equivalent Circuit-

O(n2)
Large Number

of Coupled 

Lines (n)

EMI

Simulation Time➔O((n2)2)=O(n4) !!!

0 20 40 60
0
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1000

1500

Number of Lines (n)

C
P

U
 t

im
e

 (
s
e

c
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© R. Achar, “VLSI Interconnects and Signal Integrity", IIT-Khargpur, Dec. 2011

WR+TP +   EMI
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Waveform Relaxation:

Similar “Inhomogeneity” ???mutually compatible representation

POSSIBLE!
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© R. Achar, “VLSI Interconnects and Signal Integrity", IIT-Khargpur, Dec. 2011

= EEW

Combined 

source 

Combined representation for each iteration

+ WR

+
e


q̂

EMI 

EEi

EEv

+
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© R. Achar, “VLSI Interconnects and Signal Integrity", IIT-Khargpur, Dec. 2011

Example: WR+TP + EMI

Example 2: 3 Line, Active terminations, Trapezoidal Incidence 

t
E0(t)

V(t)
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© R. Achar, “VLSI Interconnects and Signal Integrity", IIT-Khargpur, Dec. 2011

Iteration 3

0 2 4 6 8 10 12 14 16
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Time (ns)

Actual 

Response

Iteration 3

Example: WR+TP + EMI
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© R. Achar, “VLSI Interconnects and Signal Integrity", IIT-Khargpur, Dec. 2011
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Methods

Example: WR+TP + EMI
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© R. Achar, “VLSI Interconnects and Signal Integrity", IIT-Khargpur, Dec. 2011
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Example: Complexity Analysis

Conventional

Methods

Proposed

Linear

Growth!!!
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Agenda

Advanced Interconnect Modeling Methods

➢ MoC, MRA, DEPACT

➢ WR+TP. EMI

➢ Tabulated Data Macromodeling: 

➢Parallelization, GVF

Conclusions

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"
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Why measured/simulated data

At high frequencies, many complex electrical devices may have no analytical models 

Example:    3D transmission lines, vias, packages 
non-uniform transmission lines
on-chip passive devices

•Impedance parameters or Z-parameters
•Admittance parameters or Y-parameters
•Hybrid parameters or H-parameters
•Scattering parameters or S-parameters

➔ characterized by tabulated data in terms of multiport Terminal  parameters

To identify a system for circuit simulations 

Black box
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y(s)

*

* *
*

*

*

*

*
*

*

*

*

*

* *
*

*
*

System identification via Direct Curve Fitting

*      y(s) - original data 

y'(s) - approximation

Frequency

y'(s)=
𝑎𝑛𝑠

𝑛+𝑎𝑛−1𝑠
𝑛−1+ ... 𝑎0

𝑏𝑛𝑠
𝑛+𝑏𝑛−1𝑠

𝑛−1+ …1



117

...1 sbsb

a ... sasa
)s(f

-  n

-  n

n

n

-  n

-  n

n

n

++

++
=

1

1

0

1

1

=

When written for many freq pts

System identification via Direct Curve Fitting
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➢ ill-conditioned

➢ Can not achieve Higher-Order Approximations

System identification via Direct Curve Fitting

Solution ➔ Vector fitting algorithm

Original paper:  B. Gustavsen and A. Semlyen, "Rational Approximation 
of Frequency Domain Responses by Vector Fitting, " IEEE Transactions 
on Power Delivery, vol. 14, no. 3, pp. 1052-1061, July 1999.

𝑓 𝑠 = ෍

𝑛=1

𝑁
෤𝑟𝑛

𝑠 − 𝑝𝑛
+ 𝑑 + 𝑠𝑒

➔ Continuously refined and evolved over last 20+ years
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Data

initial guess of Poles

𝜎(𝑠) = ෍

𝑛=1

𝑁
𝑐𝑛

𝑠 − ǉ𝑝𝑛
+ 1

Scaling function

Substituting for 𝜎(𝑠)

𝜎 𝑠 𝑓 𝑠 ≅ ෍

𝑛=1

𝑁
ǁ𝑐𝑛

𝑠 − ǉ𝑝𝑛
+ 𝑑 + 𝑠𝑒Scaled function

Same Poles

𝑓 𝑠 = ෍

𝑛=1

𝑁
෤𝑟𝑛

𝑠 − 𝑝𝑛
+ 𝑑 + 𝑠𝑒

VF – an Iterative Algorithm 

Assume an initial set of poles and a scaling function 

and writing the eq. at k frequency points
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𝑨 =

1

𝑠1 − ǉ𝑝1
. . .

1

𝑠1 − ǉ𝑝𝑁
1 𝑠1

−𝑓(𝑠1)

𝑠1 − ǉ𝑝1
. . .

−𝑓(𝑠1)

𝑠1 − ǉ𝑝𝑁
1

𝑠2 − ǉ𝑝1
. . .

1

𝑠2 − ǉ𝑝𝑁
1 s2

−𝑓(𝑠2)

𝑠2 − ǉ𝑝1
. . .

−𝑓(𝑠2)

𝑠2 − ǉ𝑝𝑁. . . . . . . . . . . . . . .
1

𝑠𝑘 − ǉ𝑝1
. . .

1

𝑠𝑘 − ǉ𝑝𝑁
1 𝑠𝑘

−𝑓(𝑠𝑘)

𝑠𝑘 − ǉ𝑝1
. . .

−𝑓(𝑠𝑘)

𝑠𝑘 − ǉ𝑝𝑁

AX=b where,

Step1:Computation of Poles

Therefore, for k frequency points

𝑏 =

𝑓(𝑠1)
𝑓(𝑠2)
:

𝑓(𝑠𝑘)

𝑋 = ෤c1 . . . ෤c𝑁 𝑑 𝑒 𝑐1 . . . 𝑐𝑁
𝑇

overcomes ill conditioning !!!

Scaled 
function 
residues

Scaling 
function 
residues
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Computation of zeros of       :  Real Case𝝈(𝒔)

𝑯 = 𝑨 − 𝑩 𝑪𝑻

A = 

ǉ𝑎1
ǉ𝑎2

.
ǉ𝑎𝑛

B=

1
1
⋮
1

C=

𝑐1
𝑐2
⋮

𝑐𝑛

Zeros  ǉ𝒛𝒏 of 𝝈(𝒔) are the eigenvalues of the matrix

With,𝑋 = ǁ𝑐1 . . . ǁ𝑐𝑛 𝑑 𝑒 𝑐1 . . . 𝑐𝑁
𝑇 known from AX=b

Refined poles for the next iteration can be obtained in 
terms of the zeros of 𝝈(𝒔)
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Computation of Poles: Multiport Case

𝑌 𝑠 =

𝑌11 𝑌12 . . . 𝑌1𝑃
𝑌21 𝑌22 . . . 𝑌2𝑃
. . . . . . . . . . . .
𝑌𝑃1 𝑌𝑃2 . . . 𝑌𝑃𝑃

;

𝑌(𝑠) =

෍

𝑛=1

𝑁
෤c𝑛

1,1

𝑠 − ǉ𝑝𝑛
+ 𝑑1,1 ෍

𝑛=1

𝑁
෤c𝑛

1,2

𝑠 − ǉ𝑝𝑛
+ 𝑑1,2 . . . ෍

𝑛=1

𝑁
෤c𝑛

1,𝑝

𝑠 − ǉ𝑝𝑛
+ 𝑑1,𝑃

෍

𝑛=1

𝑁
෤c𝑛

2,1

𝑠 − ǉ𝑝𝑛
+ 𝑑2,1 ෍

𝑛=1

𝑁
෤c𝑛

2,2

𝑠 − ǉ𝑝𝑛
+ 𝑑2,2 . . . ෍

𝑛=1

𝑁
෤c𝑛

2,𝑝

𝑠 − ǉ𝑝𝑛
+ 𝑑2,𝑃

. . . . . . . . . . . .

෍

𝑛=1

𝑁
෤c𝑛

𝑃,1

𝑠 − ǉ𝑝𝑛
+ 𝑑𝑃,1 ෍

𝑛=1

𝑁
෤c𝑛

𝑃,2

𝑠 − ǉ𝑝𝑛
+ 𝑑𝑃,2 . . . ෍

𝑛=1

𝑁
෤c𝑛

𝑝,𝑝

𝑠 − ǉ𝑝𝑛
+ 𝑑𝑃,𝑃

➔ A. Chinea and S. Grivet-Talocia, "On the Parallelization of Vector Fitting 
Algorithms", IEEE Trans. on Components, Packaging and Manufacturing 
Technology, vol. 1, no. 11, November 2011.
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Review of Parallel VF for Multi-CPU Environment

𝚽1 0 ⋯
0 𝚽2 0
⋮
0

⋮
0

⋱
0

0 ෩𝚽𝟏

0 ෩𝚽𝟐

⋮
𝚽𝑃2

⋮
෩𝚽𝑃2

ǁ𝑐1
⋮
ǁ𝑐𝑃2

ො𝒄

=

0
0
⋮
0

ሚ𝐴1 = 𝛼1[𝚽1
෩𝚽𝟏] Define 𝐴1 =

𝑟𝑒𝑎𝑙( ሚ𝐴1)

𝐼𝑚𝑔( ሚ𝐴1)

⋮
ሚ𝐴2 = 𝛼2[𝚽2

෩𝚽2]

⋮
ሚ𝐴𝑙 = 𝛼𝑙[𝚽𝑙

෩𝚽𝑙]
𝐴𝑙=

𝑟𝑒𝑎𝑙( ሚ𝐴𝑙)

𝐼𝑚𝑔( ሚ𝐴𝑙)

𝜶𝑙 = ൗ1 √∥𝑺𝑙,𝑘∥ 𝑙 = (𝑖 − 1)𝑃 + 𝑗
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Splitting Strategies

None Splitting All Splitting

Uses only one Scaling 
Function for the Entire S 

matrix

➔ Leads to a common          
pole-set

➔ CPU1: 𝑨1 = [𝑸1, 𝑹1]
CPU2: 𝑨2 = [𝑸2, 𝑹2]

⋮
CPUT: 𝑨𝑇 = [𝑸𝑇 , 𝑹𝑇]

➔

Uses individual Scaling 
Function for each S-

Element

➔ Leads to individual pole 
sets for each S-element

➔ CPU1: 𝑨1 = [𝑸1, 𝑹1]➔ ො𝒄1
CPU2: 𝑨2 = [𝑸2, 𝑹2]➔ ො𝒄2

⋮
CPUT: 𝑨𝑇 = [𝑸𝑇 , 𝑹𝑇]➔ ො𝒄𝑇

Compute ො𝒄 in a single CPU
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**S. Ganeshan, N. Kumar and R. Achar and W. Lee, "GVF: GPU based 
Vector Fitting for Modelling of Multiport Tabulated Data Networks", 
IEEE CPMT, pp. 1375-1387, Aug. 2020.

GVF: GPU Based Vector Fitting

➔ Emerging Computing Platform of GPUs

➔ Thousands of Cores

➔ Exploit massive parallelization potential
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GVF: GPU based parallel Vector Fitting -

None Splitting Strategy

Bulk Transfer from CPU to GPU: 𝑺𝑙, g, 𝜶𝑙

Formulate: 𝑨1⋯ 𝑨𝑷𝟐

Perform QR: 𝑹1⋯ 𝑹𝑷𝟐 (MAGMA)

Extract: 𝑹𝑙𝑁×𝑁
22 : 𝑹1

22⋯𝑹
𝑷𝟐
22

Collect 𝑹𝑙𝑁×𝑁
22 for 

each 𝑨𝑙 for 
evaluation of 

residues of the 
scaling function

GPU

Formulate and transfer to GPU: ෡𝜱
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Approach (b)

Transfer ො𝒄 from GPU to CPU

GVF: None Splitting Strategy

Compute: ො𝒄Approach (a)

Bulk Transfer 𝑹𝑙𝑁×𝑁
22 (𝑷𝟐elements)

from GPU to CPU

𝑹1
22

𝑹2
22

⋮
𝑹𝑃2
22

𝝀𝑇

ො𝒄 =

𝟎
𝟎
⋮
𝟎
𝑲

CPU

𝑹1
22

𝑹2
22

⋮
𝑹𝑃2
22

𝝀𝑇

ො𝒄 =

𝟎
𝟎
⋮
𝟎
𝑲

GPU

Compute Zeros of the 
scaling function in a CPU 
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Example 1 – 60 ports, 70 poles, 1000 Frequency Samples

Cost of individual steps in GVF

(Using MAGMA library)

Time (msec)

(Approach (a))

Time (msec)

(Approach (b))

Transfer of 𝑺, 𝒈, 𝜶 from CPU to GPU 20.19 20.19

Formulation of ෡𝚽 in CPU and transfer to GPU 1.97  1.97  

Formulation of 𝑨 in GPU (customized) 0.04 0.04

QR factorization in GPU (MAGMA) 543.09 543.09

𝑹𝑙
22 extraction in GPU (customized) 0.02 0.02

Transfer back 𝑅𝑙
22 from GPU to CPU 56.00 -

Residue Ƹ𝑐 calculation in CPU (LAPACK) 460.02 -

Residue Ƹ𝑐 calculation in GPU (MAGMA) - 562.50

Transfer back Ƹ𝑐 from GPU to CPU - 0.03

Zeros computation in CPU 3.60 3.60

Total Time Taken 1084.9 1131.44

Size of ෡𝚽=(1000 x 70) ; 𝑨𝑙(𝑷
2 = 𝟑𝟔𝟎𝟎)➔ (2000 x 143) 
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GVF: All Splitting Strategy

Compute: 𝑨𝑙
𝑇 ∗ 𝑨𝑙, 𝑨𝑙

𝑇 ∗ 𝒃𝑙 (MAGMA)

Formulate: ෡𝚽1⋯ ෡𝚽𝑷𝟐

Formulate: 𝑨1⋯ 𝑨𝑷𝟐, 𝒃1⋯ 𝒃𝑷𝟐

Bulk Transfer from CPU to GPU:
𝑺𝑙, g, 𝜶𝑙, 𝑝𝑛

Evaluate: ො𝒄𝒍

Transfer ො𝒄𝒍 from GPU to CPU

GPU
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GVF: GPU based Vector fitting algorithm
Example case: 120 ports, 80 poles, 1000 Frequency Samples

All Splitting Strategy
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Conclusions

Advanced Interconnect Modeling and 

Simulation methods still emerging:

• to meet the fundamental challenges such 

as passivity

• to be more efficient/accurate

• to meet the high-speed designer’s dream 

of seamless analysis platform for mixed 

circuit/EM/RF design.

© R. Achar, “High-Speed Interconnects and Signal Integrity Challenges"


