

The State of the Art in Material Characterization for Electronics

IEEE Boston/Providence/New Hampshire Reliability Chapter

> Alfredo Díaz González, PhD Applications Specialist - NanoAnalysis

Outline

Introducing Oxford Instruments

SEM-based Characterization: The Basics

Specific Techniques: The Basics and Examples

Non-SEM Characterization: The Basics and Examples

Questions and Answers

Founded in 1959 as the first commercial spin out from Oxford University, we are a global provider of high technology products and services to the world's leading companies and foremost scientific research communities. Our products enable customers to image, analyse, control and manipulate materials down to the atomic and molecular level.

Our purpose is to enable a greener, healthier, more connected advanced society

We enable our customers to

Make new scientific discoveries

Accelerate applied R&D

Increase productivity in high-tech manufacturing

Accelerating global progress in key areas including healthcare, energy and environment, and advanced materials - the building blocks of modern society

Atomic force microscopy (AFM) Asylum Research

Benchtop nuclear magnetic resonance (NMR) spectrometers Magnetic Resonance

Solutions for

- Materials Characterisation
- Life Science
- Quantum Technology

Scientific cameras, microscopy solutions, spectrographs & cryostats Andor

Semiconductor

Dilution refrigeration and superconducting magnets NanoScience

Etch & deposition processing equipment, solutions & recipes Plasma Technology

X-ray tubes, power supplies & integrated X-ray sources X-ray Technology

Analytics for electron microscopy NanoAnalysis

3D Raman & correlative microscopes WITec

Atomic force microscopy (AFM) Asylum Research Benchtop nuclear magnetic resonance (NMR) spectrometers Magnetic Resonance Analytics for electron microscopy NanoAnalysis Solutions for Materials **3D Raman & correlative microscopes WITec** Characterisation

Life Science

- Quantum Technology
- Semiconductor

Scientific cameras, microscopy solutions, spectrographs & cryostats Andor

Dilution refrigeration and superconducting magnets NanoScience

Etch & deposition processing equipment, solutions & recipes Plasma Technology

X-ray tubes, power supplies & integrated X-ray sources X-ray Technology

Power your research with our solutions

Atomic force microscopy (AFM) Asylum Research

Benchtop nuclear magnetic resonance (NMR) spectrometers Magnetic Resonance

Solutions for

- Materials
 Characterisation
- Life Science
- Quantum Technology
- Semiconductor

3D Raman & correlative microscopes WITec

Analytics for electron microscopy NanoAnalysis

Scientific cameras, microscopy solutions, spectrographs & cryostats Andor

Dilution refrigeration and superconducting magnets NanoScience

Etch & deposition processing equipment, solutions & recipes Plasma Technology

X-ray tubes, power supplies & integrated X-ray sources X-ray Technology

Scanning Electron Microscopy

Scanning Electron Microscope

Electron Beam – Sample Interaction

Scanning Electron Microscope: Imaging

Secondary Electron (SE) Detectors

SE Image Greyscale Topography contrast

- Detects low energy (50eV) SEs
- Signal originates from the near-surface regions
- Provides useful topographical information about the surface

Scanning Electron Microscope: Imaging

Backscattered Electron (BSE) Detectors

BSE Image Greyscale Z-number contrast Topography contrast

- High energy electrons (Originate from deeper and larger regions)
- Provides indicative information on atomic number (Z)
- Segmented detectors can show topography

Electron Beam – Sample Interaction

Scanning Electron Microscope: X-rays

Electron Beam – Sample Interaction

- X-rays are emitted from a material when it is ionized by an electron
- The x-rays are acquired and characterized
- An x-ray spectrum consist of two components:

Continuum or background (Bremsstrahlung radiation)

Characteristic X-rays

Fundamentals: e⁻ Beam and Sample Interaction

Electron Microscopy Solutions

Nanomanipulation

OmniProbe

Sample manipulation and lift-out

EBSD

Electron Backscatter Diffraction

Symmetry CMOS camera

Structural analysis and phase identification

EDS & WDS

Energy Dispersive X-ray Spectroscopy

Ultim Max & Ultim Extreme silicon drift detectors Fast and accurate elemental characterization

Wavelength Dispersive X-ray Spectroscopy

Wave

Elemental characterization with ultimate spectral resolution for accurate quantification of trace elements

BEX

Backscattered Electron & X-ray Imaging

Unity

High-definition color imaging embedded with elemental data as you navigate your sample

EDS & WDS

Energy Dispersive X-ray Spectroscopy Wavelength Dispersive X-ray Spectroscopy

High Spatial Resolution Analysis: Bulk SRAM device on SEM

Problem:

- Chemically characterize structures in bulk devices
- Structures range in size from µm's to nm's
- Imaging ~5 nm scale or surface features in the SEM requires low kV and short working distance

Solution:

- Working at lower kV improves spatial resolution
- Ultim Extreme large area SDD:
 - Designed for low kV operation
 - Optimized geometry for short working distance
 - Windowless construction
 - Maximum X-ray collection efficiency
- TruMap processing ensures that you see the real distribution of elements

Many 'traditional' TEM analyses can be done on SEM

High Spatial Resolution Analysis: Flash device mapping on SEM at low kV

© Oxford Instruments 2023

High Spatial Resolution Analysis: Power Device Failure

EDS Layer Thickness Measurement AZtec LayerProbe Technique Comparison

EDS Layer Thickness Measurement: Correlation to AFM

Correlation of LayerProbe result with Oxford Instruments Asylum Research AFM

Automated Particle Analysis Identification and classification of contaminants

Problem:

- Sample cleanliness is a quality issue
- Nanometer size particles can result in product failure
 - e.g., particles in a hard disk drive can result in disk failure or a head crash
- Process Control and Particle Analysis
- Wafer analyses

Solution:

- World leading particle analysis solution
- Quickly and accurately identify, analyze and classify contaminants
- Location, morphology & composition of particles

EDS: Some Limitations

- Peak overlaps and minimum detection limit
- ...different method: Wavelength Dispersive
 Spectrometry (WDS)
 - Spectral resolution of WDS is ~10x better than EDS
 - WDS provides better separation of peak overlaps
 - **Detection limit** of WDS is ~10x better than EDS
 - WDS can accurately detect and quantitatively measure trace elements (i.e., <1000 ppm)

EDS-WDS Maps: Spectral Resolution

WDS and EDS – Overlay

Overlap of Lines Si, Ta and W

EDS-WDS Maps: Spectral Resolution

WDS Measurement of Doping in Semiconductors

Problem:

 Mg is present at a trace level (below 1.0 wt. %) which would be difficult to accurately measure with EDS

Solution:

 WDS measurement ideal due to superior detection limit Atomic % Weight %

Active	La	bel	N		Mg		Ga	1	Total
0	WDS Point 1 sa	ample A 10k	V 51.1977	WDS	0.1038	WDS	48.6985	WDS	100.0000
	WDS Point 2 sa	ample A 10k	V 50.6991	WDS	0.1101	WDS	49.1908	WDS	100.0000
	WDS Point 3 sa	ample A 10k	V 50.6714	WDS	0.1193	WDS	49.2093	WDS	100.0000
	WDS Point 4 sa	ample A 10k	V 50.8052	WDS	0.1100	WDS	49.0848	WDS	100.0000
	WDS Point 5 sa	ample A 10k	V 50.9706	5 WDS	0.1144	WDS	48.9150	WDS	100.0000
	WDS Point 6 st	ample A 10k	V 50.9886	5 WDS	0.1151	WDS	48.8963	WDS	100.0000
	WDS Point 7 st	ample A 10k	V 50.8365	, WDS	0.1108	WDS	49.0527	WDS	100.0000
	WDS Point 8 st	ample A 10k	V 50.9516	WDS	0.1076	WDS	48.9407	WDS	100.0000
	WDS Point 9 s	ample A 10k	V 50.7564	WDS	0.1144	WDS	49.1292	WDS	100.0000
	a distantian of the second								
) Sta St	atistics	N	Mg		5a				
Star St Max	atistic	N 51.1977	Mg 0.1193	49.2	5 a 2093				
Stand St Vlax Vlin	atistic	N 51.1977 50.6714	Mg 0.1193 0.1038	49.2 48.0	Ga 2093 5985				
Sta St Vlax Vlin Averag	atistic atistic	N 51.1977 50.6714 50.8752	Mg 0.1193 0.1038 0.1117	49.2 48.0 49.0	5a 2093 5985 0130				

Quant Results View

Active	Label	N	Mg	Ga	
0	WDS Point 1 sample A 10kV	17.1975 WDS	0.0605 WDS	81,4222	
	WDS Point 2 sample A 10kV	17.0411 WDS	0.0642 WDS	82.2987	
	WDS Point 3 sample A 10kV	17.0472 WDS	0.0696 WDS	82.4043	
	WDS Point 4 sample A 10kV	17.0805 WDS	0.0642 WDS	82.1395	02
	WDS Point 5 sample A 10kV	17.2017 WDS	0.0670 WDS	82.1684	WDS 99.437
	WDS Point 6 sample A 10kV	17.1978 WDS	0.0674 WDS	82.0898	WDS 99.355
	WDS Point 7 sample A 10kV	17.1634 WDS	0.0649 WDS	82.4333	WDS 99.661
	WDS Point 8 sample A 10kV	17.1977 WDS	0.0631 WDS	82.2233	WDS 99.484
	WDS Point 9 sample A 10kV	17.1187 WDS	0.0670 WDS	82.4766	WDS 99.662
	All and a second se				

 Statistics 						
Statistic	N	Mg	Ga			
Max	17.2017	0.0696	82.4766			
Min	17.0411	0.0605	81.4222			
Average	17.1384	0.0653	82.1840			
Standard Deviation	0.0677	0.0027	0.3167			

Average [Mg] measured in the sample corresponds to a mass percentage of 0.0653%, equivalent to a concentration of 9.8×10^{19} cm⁻³ which shows good agreement with the SIMS values of 9.5×10^{19} cm⁻³ and EPMA values of $9.4 (\pm 0.2) \times 10^{19}$ cm⁻³

spectrometer

WDS scan of the Mg K α peak using the TAP crystal in the Wave

Making Imaging Elementary

BEX- UNITY Detector

Traditional Imaging & Analysis

BEX Imaging Backscattered Electron and X-ray Detectors

- Combines BSE and x-ray signals
- Characteristic x-rays for composition
- Acquired simultaneously
- Works at the speed and conditions of a traditional imaging detector!

SE Image Greyscale Topography contrast

BSE Image Greyscale Z-number contrast Topography contrast

BEX Image Colored by Element Atomic contrast Topography contrast

Introducing Unity

Unity Sensor Head

Optimized to collect maximum signal without obscuring EDS

- BSE sensors
 - Peltier cooled sensors for enhanced sensitivity
 - Two segments for topography modes
- X-ray sensors
 - Large solid angle for SDDs for high speed

Unity BEX Detector

- Retractable below pole piece BSE and x-ray detector for simultaneous acquisition
- Optimized head thickness and central hole for daily use and flexible imaging

Unity BEX Imaging Advantages of BEX

IN STRUMENTS

Optimized for normal imaging conditions <20kV, 1nA

Flexible Working Distance >6mm

Large Field of View (compatible with Wide Field modes)

No shadowing unlike SEs and conventional EDS

Unity BEX Imaging Rapid PCB-level Inspection

BEX Cartography Map PCB Cross Section 44 fields

Acquisition time: 2 minutes 7 seconds

Navigation with Chemistry

Fast **High-Definition** Imaging

Whole Sample Cartography

Microstructure Characterization

With Electron Backscattered Diffraction (EBSD)

Electron BackScatter Diffraction (EBSD)

EBSD provides

- EBSD is a SEM based technique, used to characterize crystalline materials with sub-micron resolution
- Crystal orientations and all associated measurements (texture, grain size, strain, boundary characterization etc.)
- Discrimination between phases
- Identification of unknown phases when integrated with EDS

SYMMETRY S3

- Custom design CMOS sensor and fiber optics giving high sensitivity
- Fast mapping possible on reallife samples
- Detector elevation control
- No compromise one detector for all applications

Crystallography Basics

- Crystal: Posesses a regular arrangement of atoms
- Unit cell: Essentially, smallest unique unit of the crystal; "building block"

Crystallography Basics

Electron BackScatter Diffraction (EBSD)

Problem:

- Interconnects are critical for devices to function
- Formation of intermetallics causes stress which leads to failure
- Understanding where and why failure occurs

Micro-bump in flip-chip packaging

Solution:

Orientation Map

Raster: 516x944 Step Size: 0.05um

Colorino I

Ag3 Sn Cu3Sn

Eta (Cu.NO65n5

79.0% 5 40.2% 0.09% 0.28% 3.39% Rapid microstructural analysis with Symmetry S3, the fastest, most sensitive CMOS EBSD camera

Performance and lifetime depend on several factors including grain size, grain

During operation, the TSVs will be subject to heat – which may impact the

Solution:

Use EBSD to understand
 the Cu deposition process
 and how aging affects the
 microstructure

Preferred texture

Grain boundaries >10° orientation difference

Twin boundaries shown in red – dominance of twin boundaries in the copper

Problem:

microstructure

orientation, grain boundary types, etc.

Microstructure characterization: Flash Memory

(a) Band Contrast Map

(b) Phase Map (Red : Si Phase, Blue : W Phase)

Problem:

The spatial resolution of the technique on a conventional bulk sample is on the order of 50-100 nm

Solution:

The TKD method(which performs EBSD on an electron transparent sample) using a Symmetry CMOS detector can provide enhanced sub-10 nm spatial resolution.

Acknowledgment: Hiroyuki Ito and Yasushi Kuroda, Hitachi Japan

Non-SEM Characterization

Atomic Force Microscope (AFM) (Asylum Research)

Morphology: Growth Conditions

Engineering Problem:

- Growth conditions during PVD or CVD also determine final film quality
- Change in growth conditions (temperature, pressure, rate) results in different morphologies
- Challenging to achieve layer growth uniformity
- **Goal:** Monitor the effect of growth conditions on film morphology

Rq 8.7 nm

Ga_2O_3 on sapphire

AFM Solution:

- Ga₂O₃ on sapphire: morphology from island vs. layer-by-layer growth
- InGaTeAs on GaAs: higher rate of deposition produces stress that results in fissures
- Ga_2O_3 on sapphire: temperature and oxygen flow results in different grain sizes and crystal quality

SRAM: Variation in Dopant Type

Map of Dopant Type shows possible failure on an SRAM device

Engineering Problem:

- Semiconductor devices consist of segregated regions of p-type and n-type silicon
- Failure occurs when there is an unexpected variation in dopant type
- <u>Goal</u>: Map out dopant type variation to determine failure in devices

AFM Solution:

- dC/dV phase image gives charge carrier type
- Strong contrast indicates doped regions (red is p-type, blue is n-type)
- Image shows a leak between two devices, which may indicate failure

Raman Spectroscopy (WITec)

Strain in Si Wafers

 Shifts in the position of the of Si Raman peak are indicative of strain within the lattice

GaN 3D Stress Mapping

Etched sapphire substrate

After growth of $3\mu m$ GaN

After growth of an additional $17 \mu m$ thick GaN layer

10 µm

GaN layer white light image

GaN Raman spectra at different locations

Sample & EM Images courtesy of Eberhard Richter; Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik; Berlin

54

Si IC Device Contamination Analysis

Integral intensity Si Raman line @520/cm

silicon

shift of peak Si line 515 - 525 /cm

stress

Integral intensity carbon @ 1355-1575 /cm

contamination

Nuclear Magnetic Resonance Spectroscopy (NMR)

- The sample is exposed to an external magnetic field (Strong magnetic fields are necessary for NMR spectroscopy)
- The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups.
- Applications in Polymers
 - Crosslinking
 - Plasticizer content
 - Density
 - Oil and rubber content
 - Crystallinity... and many more!

Time Domain NMR Signal

Cross-linking Density in Polymers/Elastomers:

Summary:

Thank you for your attention!

inclusive • innovative • trusted • purposeful