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A Wireless World
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• High-speed wireless links (WiFi, Bluetooth) allow seamless connections 
among device and appliance. 

• Although RF design always talks about wireless transmission, all concepts 
are valid for wired transmission.



Evolution of Mobile Wireless Communication
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An old car phone (1940) First Hand held cell phone (1973)

Motorola

Early wireless devices



Evolution of Mobile Wireless Communication
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What’s so special in 5G
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• Frequency bands – sub-6GHz and 
28GHz

• 5G small cell 
• Qorvo and Peregrine Semi are 

offering solutions using SOI 
technology. 

• Average power of 5-6 W
• Lower power will limit the coverage 

area of small cells, restricting its use 
in cities.

• Solution – GaN technology
• Enables high power modules for 

data transmission.

Ref. – A. Niknejad, CICC 2015



6G?
• Research on 6G 
• Applications 

• Artificial Intelligence (AI)
• Extended Reality (XR)
• Automation
• Robotics

• 6G requires massive performance 
improvements as compared to 5G. 

• 5G speed - 20 Gbps and frequencies up 
to 100 GHz

• 6G - 1000 Gbps and may utilize 
frequencies up to 3 THz
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GaN Properties

Nanolab, Indian Institute of Technology Kanpur 7

[1]
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[1] U. K. Mishra et al., Proc. IEEE, 96 (2), [2008] [2] M. A. Briere, Tech. Rep., International Rectifier, Dec. [2008]

Comparison of Material Properties & respective FoMs



GaN Attractions & Avenues

Nanolab, Indian Institute of Technology Kanpur 8[1] S. Levin, Tech. Rep., Power Petrov Group, [2013]

[1]

Size comparison of Si power MOSFET with GaN HEMT 
from EPC for same performance

Size comparison of RF HEMTs based on GaAs and 
GaN technologies from Qorvo

Industry players for power applications as of 2012

GaN

GaAs
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Nanolab:
Characterization and Modeling 

Capabilities
− About Nanolab

− Hardware Capabilities
− EDA Capabilities



About Nanolab: Some Stats

− Postdoc – 5
− Ph.D. – 27 
− Ten PhDs graduated

Current Members
2020 2019 2018 2017 2016 2015

Books 1 1

Journal 16 14 20 19 18 9

Conference 9 15 19 11 30 30

Publications

− Government Agencies
− Industry Partners
− Compact Model Coalition (CMC)

Funding
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About Nanolab: Collaborations
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About Nanolab: Areas of Research
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Hardware Capabilities I

Keysight Semiconductor Device Analyzer 
(B1500A) Measurement capabilities: 

− IV, CV, pulse/dynamic IV range of  0.1 fA - 1 A / 0.5 µV - 200 V
− Evaluation of devices, materials, semiconductors, 

active/passive components
− AC capacitance measurement in multi frequency from 1 kHz to 

5 MHz
− Pulsed IV measurement min 10 ns gate pulse width with 2 ns 

rise and fall times with 1 µs current measurement resolution

Maury Microwaves/AMCAD AM3221

− Bipolar ±25V/1A (gate) and high-voltage 250V/30A (drain) 
models

− Pulse widths down to 200ns
− Synchronized pulsed S-parameter measurements
− Connect systems in series for synchronizing 3+ pulsed 

channels
− Long pulses into the tens and hundreds of seconds for 

trapping and thermal characterization
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Hardware Capabilities II

Keysight PNA-X (N5244A) 10 MHz to 43.5 GHz

− High Frequency Device Characterization (Microwave 
Network Analyzer)

− 100Khz to 8.5 GHz and 10 MHz to 43.5 GHz
− 2-port and 4-ports with two built-in sources
− High output power (+16 dBm)
− Best dynamic accuracy: 0.1 dB compression with +15 dBm 

input power at the receiver
− Low noise floor of -111 dBm at 10 Hz IF bandwidth

Keysight ENA (E5071C) 100KHz to 8.5 GHz

− 9 kHz to 4.5/6.5/8.5/14/20 GHz
− 2- or 4-port, 50-ohm, S-parameter test set
− Improve accuracy, yield and margins with wide dynamic range 

130 dB, fast measurement speed 8ms and excellent 
temperature stability 0.005 dB/°C
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Hardware Capabilities III

Keysight Power Device Characterization System: B1505

− Power device characterization up to 1500 A & 10 kV
− Medium current measurement with high voltage bias (e.g. 500 mA at 1200 V)
− μΩ on-resistance measurement capability
− Accurate, sub-picoamp level, current measurement at high voltage bias
− Fully automated Capacitance measurement at up to 3000 V of DC bias
− High power pulsed measurements down to 10 μs
− High voltage/high current fast switch option to characterize GaN current collapse effect
− Fully automated thermal testing from -50 ℃ to +250 ℃

Keysight N8975B Noise Figure Analyzer

− Frequency range 10 MHz to 26.5 GHz in a one-box solution
− Includes Spectrum Analyzer and IQ Analyzer (Basic) modes
− SNS series noise source N4002A
− U7227C 100 MHz to 26.5 GHz External USB Preamplifier included
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https://www.keysight.com/main/redirector.jspx?action=ref&lc=eng&cc=IN&nfr=-536902736.1163265&ckey=1000003572:epsg:pro&cname=PRODUCT


Load Pull Characterization

Maury Load Pull 
Characterization system

− A fundamental passive load 
pull system capable of 
performing load pull 
characterization up to 15W.

− XT982GL01 – 0.6 to 18 GHz 
Load tuner

− Plan to expand to a 3 
harmonic hybrid load pull 
system soon.
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Thermal Noise Characterization
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Atomistic Simulations

EDA Capabilities
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High-Frequency Characterization



High-Frequency Characterization

• We seek to model the linear (small-signal) behavior of a device subject to a 
high-frequency test signal

• Such behavior is typically summarized by the N-port network parameters of 
the device

• Impedance parameters (Z-Parameters)
• Admittance parameters (Y-Parameters)
• Hybrid parameters (H-Parameters)
• Scattering parameters (S-Parameters)

• Focus on 2-port networks, which we can measure with our lab equipment
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Network Analysis basics

Nanolab, Indian Institute of Technology Kanpur 23

2121111 VhIhV +=

2221212 VhIhI +=
2121111 VYVYI +=

2221212 VYVYI +=
2121111 IZIZV +=

2221212 IZIZV +=

jkforIj

i
ij

k
I
VZ

≠=

=
0 jkforVj

i
ij

k
V
IY

≠=

=
0 01

1
11

2 =

=
VI

Vh
02

1
12

1=

=
IV

Vh

01

2
21

2 =

=
VI

Ih
02

2
22

1=

=
IV

Ih
Zij found by driving port j with 
current Ij, open-circuiting all 
other ports, & measuring 
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Network Analysis basics contd.

• Z-, Y-, and H-Parameters are an abstraction at high frequencies since 
voltages, currents, and impedances can not be measured in a direct 
manner

• Desired quantities are non-unique for non-TEM modes of propagation
• Require perfect open and short circuits which are difficult to achieve

• S-Parameters are preferred because they are based on the concept of 
incident, reflected, and transmitted waves which are more easily 
measured at high frequencies in terms of amplitude and phase angle 
of the various waves

• Typically deal with 2-port network parameters for transistor compact 
modeling work
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110GHz S-Parameter Measurement System
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Network
Analyzer

Semi-
automatic
probe
station

Coplanar
probes
to DUT

Computer
control



RF GSG probes
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Calibration

• Calibration of measurement setup required to account for parasitics
associated with connection of VNA to a DUT

• Connection results in additional losses, reflective discontinuities, & phase shifts
• 4-port S’ matrix implies 16 error terms

• Passive nature of error network implies that it is reciprocal such that transmission 
terms are equal and a 12-term error model suffices to describe the S’ matrix
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Calibration contd.

• Calibration achieved by measuring known standards located at DUT reference 
planes (probe tips for on-wafer measurements, and applying algorithms to 
determine the 12 error terms)

• Several calibration techniques available
• Open-Short
• SOLT (Short-Open-Load-Thru)
• SOLR (Short-Open-Load-Reciprocal)
• TRL (Thru-Reflect-Line)
• LRM/LRRM (Line-Reflect-Match/Line-Reflect-Reflect-Match)

• Different standards required for different techniques, but, in general, standards 
must be precise with very low, known parasitics

• A special Impedance Standard Substrate (ISS) with precisely defined standards is 
used

• Typically use SOLT even for 110GHz measurements
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Impedance Standard Substrate contd.
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S-parameter measurement
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• S-parameters measured
using vector network
analyzer (VNA) (e.g.
Agilent E5071C ENA with
frequency range of 100
kHz–8.5 GHz)

• De-embedding
– Use de-embedding to remove parasitics
– Probe/wire parasitics are de-embedded using

calibration substrate
– Pads to device parasitics are de-embedded using

OPEN-SHORT de-embedding



De-embedding
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• Even with calibration, reference planes are still not at the 
boundaries of the intrinsic device due to on-wafer test 
structure interconnects (probe pads, transmission lines, 
ground planes, etc.)

• Must measure additional on-wafer test structures to calibrate 
out (de-embed) the remaining parasitics



De-embedding contd.

• Most common on-wafer de-embedding technique is the OPEN-SHORT 
method where

• OPEN test structure is designed to represent the parallel (G) parasitics
• SHORT test structure is designed to represent the series (Z) parasitics

• De-embedding results are valid if OPEN, SHORT, and DUT are linear 
and time invariant (LTI) in nature

• OPEN and SHORT are passive and, thus LTI
• DUT is LTI if it behaves linearly with applied input power – care must be taken 

in choosing power level for S-Parameter measurements

Nanolab, Indian Institute of Technology Kanpur 33



Open-Short De-embedding
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Courtesy: Agilent Technologies



De-embedding contd.

• OPEN-SHORT De-embedding Method:
1. Measure the S-parameters of the DUT embedded in the padset (Smeas).
2. Measure the S-parameters of the OPEN and SHORT de-embedding standards (Sopen and 

Sshort, respectively).
3. Convert Sopen and Sshort to Y-parameters (Yopen and Yshort, respectively). Subtract Yopen from 

Yshort to yield Y’short (the Y-parameters of the short standard with the parallel capacitive and 
resistive contribution from the pads and substrate removed).

4. Convert Y’short to Z’short. Z’short now represents the combined network consisting of the 
three series impedances (Z1, Z2, and Z3).

5. Convert Smeas to Ymeas and subtract Yopen from it. This yields Y’meas (the Y-parameters of the 
DUT with the parallel capacitive and resistive contribution from the pads and substrate 
removed). Convert Y’meas to Z’meas which still contains the series impedances associated 
with Z1, Z2, and Z3 in addition to the desired DUT terminal characteristics.

6. Subtract Z’short from Z’meas to yield Z’’meas (the Z-parameters of the DUT in the absence of all 
padset parasitics) and finally, convert Z’’meas back into fully padset corrected S-parameters  
(S’’meas ) for analysis of the DUT terminal characteristics.
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An introduction to ASM-HEMT
− About ASM-HEMT and its core

− Extraction flow
− Other models incorporated into the core

− Geometric Scaling



A brief history of HEMT models 
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Various classes of compact models

Advanced SPICE Model for GaN HEMTs (ASM-HEMT)

Compact Models 
(GaN HEMT)

Table Based

Empirical

Physics Based

Threshold Voltage Based

Surface Potential Based
(ASM-HEMT)

Charge Based
(MVSG)
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www.iitk.ac.in/asm

http://www.iitk.ac.in/asm


ASM-HEMT Team @ IIT Kanpur
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ASM-HEMT: Summary

Analytical Solution of 
Schrodiger’s & Poisson’s

SP-Based Current & 
Charge Model

Noise, Trapping, Self-
Heating, Field Plate

2-DEG Charge, Ef,
Surface Potential

I-V,  C-V, DIBL, Rd, Rs, 
Vel. Sat., ...

DC, AC, Transient
Harmonic Sim.,

Noise, ...

Electrostatics

Transport

Higher-order 
Effects
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ASM-HEMT: Core Model

Real Device Effects Incorporated into the Model

Core Model Parameters

Parameter Description Extracted Value
𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 Cutoff Voltage −2.86 𝑉𝑉

𝑁𝑁𝑂𝑂𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂𝐹𝐹 Subthreshold Slope Factor 0.202

𝐶𝐶𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷 SS Degradation Factor 0.325 𝑉𝑉−1

𝜂𝜂0 DIBL Parameter 0.117

𝑈𝑈0 Low Field Mobility 33.29 𝑚𝑚𝑚𝑚2/𝑉𝑉𝑉𝑉

𝑁𝑁𝐷𝐷0𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷 AR 2DEG Density 1.9𝑒𝑒 + 17 /𝑚𝑚2

𝑉𝑉𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷 AR saturation velocity 157.6𝑒𝑒 + 3 𝑐𝑐𝑚𝑚/𝑉𝑉

𝑅𝑅𝐹𝐹𝑇𝑇0 Thermal Resistance 22 Ω

Core drain current expression
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[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, 
Sep., [2017]



Extraction Flow I

Set L, W, NF, Tbar
Device Dimensions

Extract VOFF, NF, CDSCD,
ETA from log-IDVG, LINEAR

And Saturation

Extract U0, UA, UB and RDS 
from IDVG-LIN

Extract VSAT, 
Improve ETA

From LINEAR IDVG

Extract LAMBDA, Improve
VSAT, ETA from IDVD

Temperature Parameters

Capacitance Modeling
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[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, 
Sep., [2017]



Extraction Flow II

𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑔𝑔 (Extract 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂, 𝑁𝑁𝑂𝑂𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂𝐹𝐹,𝐶𝐶𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷) 𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑔𝑔 (Extract 𝑈𝑈0) 𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 (Extract 𝑁𝑁𝐷𝐷0𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷)

𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 (Extract 𝑉𝑉𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷)

𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 (Extract 𝑅𝑅𝐹𝐹𝑇𝑇0)

[1] S. A. Ahsan et al., MOS-AK Workshop, Shanghai, [2016]
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Extraction from Id-Vg curves
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Start with 𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑔𝑔 characteristics in the log scale

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 – DIBL Parameter

𝑵𝑵𝑵𝑵𝑬𝑬𝑵𝑵𝑬𝑬𝑵𝑵𝑵𝑵 – Sub-threshold slope parameter

𝑵𝑵𝑪𝑪𝑪𝑪𝑵𝑵𝑪𝑪 – Captures the drain voltage dependence on the sub-
threshold slope.

𝑽𝑽𝑵𝑵𝑵𝑵𝑵𝑵 – Cut-Off Voltage

𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑔𝑔 characteristics in the linear scale

𝑼𝑼𝑬𝑬 – Low field mobility

𝑼𝑼𝑬𝑬,𝑼𝑼𝑼𝑼 – Mobility degradation parameters

[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, 
Sep., [2017]



Extraction from Id-Vd curves
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𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 characteristics

𝑽𝑽𝑪𝑪𝑬𝑬𝑬𝑬 – Velocity saturation parameter

𝑼𝑼𝑬𝑬, 𝑼𝑼𝑼𝑼 – Mobility degradation parameters

Access Region Parameters extracted from 𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 characteristics:

𝑵𝑵𝑪𝑪𝑬𝑬𝑬𝑬𝑵𝑵𝑵𝑵𝑪𝑪(𝑪𝑪) – 2DEG density in the access region. 

𝑽𝑽𝑪𝑪𝑬𝑬𝑬𝑬𝑬𝑬𝑵𝑵𝑵𝑵𝑪𝑪 – Saturation velocity in the access region.

𝑼𝑼𝑬𝑬𝑬𝑬𝑵𝑵𝑵𝑵𝑪𝑪(𝑪𝑪) – Low field mobility in the access region.

𝑼𝑼𝑬𝑬𝑬𝑬𝑵𝑵𝑵𝑵𝑪𝑪(𝑪𝑪) independently tunes the access region resistance around 
Vds = 0 and helps extract 𝑔𝑔𝑑𝑑𝑑𝑑 at that point.

[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, 
Sep., [2017]



Bias-dependent access region resistance model: Overview

Nonlinear variation of source/ drain access 
resistances with Ids extracted from TCAD 
simulation and comparison with model.

Nanolab, Indian Institute of Technology Kanpur 47

[1] S. Ghosh et al., IEEE International Conference on 
Electron Devices and Solid-State Circuits (EDSSC), [2016]



Bias-dependent access region resistance model: Results

Id - Vg and trans-conductance 
for the Toshiba power HEMT. 
Different slopes above Voff in 

gm-Vg: self-heating governs the 
first slope while velocity 

saturation in access region 
affects second slope.

Ids-Vds and reverse Ids-Vds fitting with experimental data. The non-linear 
Rs/d model shows correct behavior for the higher Vg curves in the Id -

Vd plot; the S-P based model can accurately capture the reverse output 
characteristics.

Effect of high access region resistance at high Vg
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[1] S. Ghosh et al., IEEE International Conference on 
Electron Devices and Solid-State Circuits (EDSSC), [2016]



Bias-dependent access region resistance model: Temperature scaling

The temperature dependence of Rd/s model is extremely important as it increases significantly 
with increasing temperature

Temperature dependence of 2-DEG charge 
density in the drain or source side access 
region:

Temperature dependence of Saturation 
Velocity:

Temperature dependence of electron 
Mobility:
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[1] S. Ghosh et al., IEEE International Conference on 
Electron Devices and Solid-State Circuits (EDSSC), [2016]



ASM-HEMT: Temperature scaling results
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Id - Vg at 100℃

Id - Vg at -20℃

Id - Vd at 100℃

Id - Vd at -20℃

ASM-HEMT features a robust temperature 
scaling model which has been validated 

across a broad range of device 
temperatures.

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑇𝑇

= 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 −
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁

− 1 � 𝑲𝑲𝑬𝑬𝑲𝑲 + 𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇

⋅ 𝑣𝑣𝑐𝑐𝑣𝑣𝑣𝑣 + 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑈𝑈𝑈 𝑇𝑇 = 𝑈𝑈𝑈 ⋅
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁

𝑼𝑼𝑬𝑬𝑬𝑬

𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 𝑇𝑇 = 𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇 ⋅
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁

𝑬𝑬𝑬𝑬

[1] S. Ghosh et al., IEEE International Conference on 
Electron Devices and Solid-State Circuits (EDSSC), [2016]



Geometric Scaling I
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Charges/Capacitances Current Scaling

Access Region Resistance Scaling



Geometric Scaling II
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Thermal Noise  and Flicker Noise Scaling

Gate Current Scaling



Contents

Nanolab – Characterization and Modeling Capabilities

An introduction to ASM-HEMT

Modeling Power Devices using ASM-HEMT

Modeling RF Devices using ASM-HEMT

Characterizing Self Heating and its Modeling

Trapping models in ASM-HEMT

Nanolab, Indian Institute of Technology Kanpur 53



Modeling Power Devices using ASM-
HEMT

− Modeling DC
− Modeling field plates

− Model comparison with a mixed mode device



Modeling DC: Room Temperature Output Characteristics
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ASM-HEMT accurately 
captures the IV 

characteristics of a 
power GaN HEMT 

device.



Modeling DC: Room Temperature Reverse Output Characteristics
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Modeling DC: Room Temperature Transfer Characteristics
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Modeling DC: Room Temperature IV – Log Scale
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Modeling DC: Output Characteristics @ T=-20℃
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IdVd @ 20 deg C
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Modeling DC: Reverse Output Characteristics @ T=-20℃
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The model scales accurately 
to sub-zero temperatures.



Modeling DC: Transfer Characteristics @ T=-20℃
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The model scales accurately 
to sub-zero temperatures.



Modeling DC: IV Characteristics @ T=100℃
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The model can accurately capture high 
temperature operation of the device. 

This is particularly important for power 
devices which generate a lot of heat.



Modeling DC: Reverse Output Characteristics @ T=150℃
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The model can accurately capture high 
temperature operation of the device. 

This is particularly important for power 
devices which generate a lot of heat.

Reverse Output 
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Vd @ 150℃

Derivative of reverse 
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Modeling field plates: Structure

A Gate Field Plate (GFP) and a Source Field Plate 
(SFP) structure modeled as transistors in series.

Field plates flatten out the peak in the electric field caused by the sudden 
drop in potential at the gate edge. TCAD showing field fluctuations leading to 

a distributed field inside the device.
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[1] S. A. Ahsan et al., IEEE Transactions on Electron 
Devices (Special Issue), [2017]



Dual FP GaN HEMT DUT

Nanolab, Indian Institute of Technology Kanpur 65[1] S. A. Ahsan et al., IEEE Trans. Electron Devices, 63 (2), [2016]

[1]

Picture of the GaN device under test

Field-plate configuration as provided by Toshiba

[1]

Schematic of the dual FP GaN device

Rs Rd
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Model representation of the device



Modeling field plates: Trends w.r.t Drain Voltage
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Terminal Capacitance: Reverse 
(Crss)

Activation of different series 
transistors with increasing drain 
voltage at a fixed gate bias

Terminal Capacitance: 
Input side (Ciss)

Terminal Capacitance: 
Output side (Coss)

The plateaus in each capacitance curve 
denote the switching-off of one of the 
transistors in series as depicted in the 

previous slide.

[1] S. A. Ahsan et al., IEEE Transactions on Electron 
Devices (Special Issue), [2017]



Field Plate Models: Trends w.r.t temperature
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Terminal Capacitance: 
Input side (Ciss) with drain 
voltage

Terminal Capacitance: 
Output side (Coss)

Terminal Capacitance: Input 
side (Ciss) with gate voltage

Terminal Capacitance: 
Reverse (Crss)

Increasing temperature shifts the threshold 
voltage in the negative direction – leading to a 
corresponding shift in the capacitance curves.

[1] S. A. Ahsan et al., IEEE Transactions on Electron 
Devices (Special Issue), [2017]



Mixed mode TCAD circuit using ATLAS
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− Schematic for Mixed-mode simulation using the 
numerical GaN FP device generated in Atlas. 

− The FP-HEMT is put as the DUT with  7 V and 0 
V pulses of 1 MHz at gate. 

− The pulse has a pulse-width of 480 ns 20 ns rise 
and fall times. 

− Supply voltage of 50 V is chosen to capture the 
maximum effect of cross coupling capacitances 
on switching transients while an inductive load is 
put at the drain.

[1] S. A. Ahsan et al., IEEE Transactions on Electron 
Devices (Special Issue), [2017]



Voltage waveforms

The model accurately 
predicts drain overshoots 
due to LC ringing, Miller 

plateaus due to accurate 
prediction in sharing of the 

gate drive current to charge 
Cgs and Cgd and the 
associated gate-drain 

charge, and the damping of 
the oscillations.
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Turn-on by switching applied gate signal from 
 7 V to 0 V (FP vs no FP)

Turn-on by switching applied gate signal from 
 7 V to 0 V (Mixed-mode vs Model)

Turn-off by switching applied gate signal from 0 V to  7 
V, keeping applied drain voltage fixed at 50 V (FP vs No 

FP)

Turn-off by switching applied gate signal from 0 V to  7 
V, keeping applied drain voltage fixed at 50 V (Mixed-

mode vs Model)
[1] S. A. Ahsan et al., IEEE Transactions on Electron 
Devices (Special Issue), [2017]



Current Waveforms

Comparison of modeled time-domain waveforms during turn-off 
with and without cross-coupling and substrate capacitances.

Solid lines = Cross-Coupling(CC) and substrate model included
Dotted lines = CC and substrate model excluded.
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Turn-on by switching applied gate signal from  7 V to 0 
V (Mixed-mode vs Model)

Turn-off by switching applied gate signal from 0 V to  7 
V, keeping applied drain voltage fixed at 50 V (Mixed-

mode vs Model)

[1] S. A. Ahsan et al., IEEE Transactions on Electron 
Devices (Special Issue), [2017]
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Modeling RF Devices using ASM-HEMT
− Extracting DC Parameters

− RF Model Extraction
− Large signal simulations
− Load Pull Simulations



Extracting DC Parameters
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𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑔𝑔 (Extract 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂, 𝑁𝑁𝑂𝑂𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂𝐹𝐹,𝐶𝐶𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷) 𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑔𝑔 (Extract 𝑈𝑈0) 𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 (Extract 𝑁𝑁𝐷𝐷0𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷)

𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 (Extract 𝑉𝑉𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷)

𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 (Extract 𝑅𝑅𝐹𝐹𝑇𝑇0)

[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, 
Sep., [2017]



RF Model & Extraction I

𝐿𝐿𝑥𝑥𝑔𝑔
𝑔𝑔

𝐿𝐿𝑥𝑥𝑥𝑥 𝑥𝑥

𝐿𝐿𝑥𝑥𝑉𝑉

𝑉𝑉

GMF

SMF

DMF

Extrinsic

Manifolds

Overlap

𝐶𝐶𝑔𝑔𝑑𝑑,𝑖𝑖
𝐶𝐶𝐺𝐺𝐷𝐷𝑂𝑂

𝐶𝐶𝐺𝐺𝐷𝐷𝑂𝑂

𝐶𝐶𝑔𝑔𝑑𝑑,𝑖𝑖

𝑔𝑔𝑚𝑚

𝑅𝑅𝑔𝑔 𝑅𝑅𝑥𝑥

𝑅𝑅𝑉𝑉

𝑔𝑔𝑥𝑥𝑉𝑉

ASM-GaN-HEMT

𝑔𝑔𝑖𝑖
𝑉𝑉𝑖𝑖

𝑥𝑥𝑖𝑖

𝐶𝐶𝐷𝐷𝐷𝐷𝑂𝑂𝐶𝐶𝑑𝑑𝑑𝑑,𝑖𝑖

𝑔𝑔𝑖𝑖

𝑉𝑉𝑖𝑖

𝑥𝑥𝑖𝑖

𝑥𝑥𝑑𝑑
PDK

Model
− Core surface potential based PDK
− Access region resistances included in core
− Bus-inductances in extrinsics

Pad-level Small Signal Equivalent Circuit Model

Device Layout

Three step methodology
− De-embed manifolds 
− Extract the intrinsic core model - Using low frequency Y-parameters
− Extract Inductances - Using high frequency Y-parameters

Nanolab, Indian Institute of Technology Kanpur 74[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, Sep., [2017]



RF Model & Extraction II: Pad Parasitics
Manifolds/Pads

− Used to probe the device
− Feed the signal to gate, drain & source bus-inductances
− Measurements obtained using TRL Calibration
− Transmission line type model
− Reciprocal (may/may not be symmetric)
− De-embedded using “deembed” s2p components in ADS

Symmetric network used for GMF/DMF Single port SMF network

Y-parameters 
for DMF 

Y-parameters 
for GMF 

Y-parameters 
for SMF 

Nanolab, Indian Institute of Technology Kanpur 75[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, Sep., [2017]



RF Model & Extraction III: Bus Inductances 
Key Pointers

− The effect of bus-inductances is ignored at low frequencies 
(assumption)

− Drain & Source access region resistances ignored from 
hand analysis (not an assumption, it is an advantage)

− Ignore some terms at low frequency (~ 10 GHz) 
(assumption)

− Very simple – only need to adjust overlap capacitances & 
gate finger resistances (advantage)

[1] I. Kwon et al., IEEE Trans. Microw. Theory Techn., 50 (6), [2002] Nanolab, Indian Institute of Technology Kanpur 76



Fitting core model parameters using ADS

Extract 𝐶𝐶𝐺𝐺𝐷𝐷𝑂𝑂
Extract 𝐶𝐶𝐺𝐺𝐷𝐷𝑂𝑂

𝑔𝑔𝑚𝑚 dispersion handled by trap model 𝑔𝑔𝑑𝑑𝑑𝑑 dispersion handled by trap model

[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, 
Sep., [2017] Nanolab, Indian Institute of Technology Kanpur 77



Bus Inductance fitting

Resonant peaks due to interaction of 
inductances with intrinsic capacitances

𝑉𝑉11 & 𝑉𝑉22 (5V) 𝑉𝑉12 & 𝑉𝑉21 (5V)

𝑉𝑉11 & 𝑉𝑉22 (20V) 𝑉𝑉12 & 𝑉𝑉21 (20V)

[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, 
Sep., [2017] Nanolab, Indian Institute of Technology Kanpur 78



Large Signal HB Simulations

Harmonic balance drive-up characteristics showing Pout, PAE & Gain

Time domain waveforms of drain voltage & current. Load line 
contours spanning the IV plane

[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, 
Sep., [2017] Nanolab, Indian Institute of Technology Kanpur 79



Validation – Real and Imaginary Loads
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Pout & PAE against load resistance (real load)

Pout & PAE against load reactance (imaginary load)

Fairly accurate in predicting the maxima for Pout & PAE

[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, 
Sep., [2017]



Load Pull simulations using ASM-HEMT

ADS Schematic for simulation of load-pull contours 22 dBm signal @ 10 GHz

Pout & PAE load pull contours for 10 mA/mm Pout & PAE load pull contours for 100 mA/mm

[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, 
Sep., [2017] Nanolab, Indian Institute of Technology Kanpur 81
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Characterizing Self Heating and its 
Modeling

− Self heating Model
− Characterization



Self- Heating Model

Self-Heating Effect
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− The self-heating circuit is defined in a 
thermal discipline.

− For the thermal discipline, power is the 
equivalent of “current” and temperature is 
the equivalent of “voltage”

𝑇𝑇 𝑅𝑅𝑡𝑡𝑡 =
𝑇𝑇𝑒𝑒𝑚𝑚𝑣𝑣(𝑅𝑅𝑡𝑡𝑡)
𝑅𝑅𝑇𝑇𝑅𝑅𝑈

𝑇𝑇 𝑅𝑅𝑡𝑡𝑡 =
𝑥𝑥
𝑥𝑥𝑑𝑑 𝑇𝑇𝑒𝑒𝑚𝑚𝑣𝑣(𝑅𝑅𝑡𝑡𝑡) � 𝐶𝐶𝑇𝑇𝑅𝑅𝑈

𝑈𝑈𝑈𝑈𝑥𝑥𝑒𝑒𝑈𝑈 𝑑𝑑𝑡𝑒𝑒𝑉𝑉𝑒𝑒 𝑐𝑐𝑣𝑣𝑈𝑈𝑥𝑥𝑐𝑐𝑑𝑑𝑐𝑐𝑣𝑣𝑈𝑈𝑉𝑉, 𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑐𝑐𝑈𝑈𝑔𝑔 𝐾𝐾𝐶𝐶𝐿𝐿
𝑣𝑣𝑈𝑈 𝑑𝑑𝑡𝑒𝑒 𝑑𝑑𝑡𝑒𝑒𝑈𝑈𝑚𝑚𝑣𝑣𝑎𝑎 𝑉𝑉𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑈𝑈𝑐𝑐𝑠𝑠𝑐𝑐𝑑𝑑,𝑤𝑤𝑒𝑒 𝑡𝑣𝑣𝑣𝑣𝑒𝑒:



Characterization
𝑇𝑇𝐽𝐽1 = 𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁,1 + 𝑅𝑅𝑡𝑡𝑡 × 𝑇𝑇𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑1

𝑇𝑇𝐽𝐽2 = 𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁,2 + 𝑅𝑅𝑡𝑡𝑡 × 𝑇𝑇𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑2

Ids

Vds

DC @ 𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁,1

Pulsed (0,0) @ 𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁,2

Extracting Rth – Both curves are measured at the 
same Vgs. The intersection point denotes a 

common junction temperature.

⇒ 𝑅𝑅𝑡𝑡𝑡= ∆𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁/∆𝑇𝑇𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑

At the intersection point:
𝑇𝑇𝐽𝐽1 = 𝑇𝑇𝐽𝐽2

And 𝑇𝑇𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑2 = 0 (Pulsed at (0,0))
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With the ASM-HEMT model, the parameter 
RTH0 is tuned till the simulated intersection 

point overlaps with the measured intersection 
point after thermal parameters like UTE, AT and 

KT1 have been extracted.

[1] T. Peyretaillade et al.,1997 IEEE MTT-S International 
Microwave Symposium Digest, Denver, CO, USA, 1997. 
doi: 10.1109/MWSYM.1997.596619.

𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁,2 > 𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁,1

Our model has been recently implemented in Keysight ICCAP.
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Trapping models in ASM-HEMT
− Trapping Models in ASM-HEMT

− Extraction using pulsed measurements



Trapping Models in ASM-HEMT: TRAPMOD I
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𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 𝑇𝑇𝑈𝑈𝑣𝑣𝑣𝑣 = 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 + (𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐵𝐵𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇 � 𝑒𝑒
− 1
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐)

𝑅𝑅𝐷𝐷 𝑇𝑇𝑈𝑈𝑣𝑣𝑣𝑣 = 𝑅𝑅𝐷𝐷 + (𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑅𝑅𝑉𝑉 + 𝐵𝐵𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑅𝑅𝑉𝑉 � 𝑒𝑒
− 1
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐)

𝑅𝑅𝐷𝐷 𝑇𝑇𝑈𝑈𝑣𝑣𝑣𝑣 = 𝑅𝑅𝐷𝐷 + (𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑅𝑅𝐴𝐴 + 𝐵𝐵𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑅𝑅𝐴𝐴 � 𝑒𝑒
− 1
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐)

𝜂𝜂0 𝑇𝑇𝑈𝑈𝑣𝑣𝑣𝑣 = 𝜂𝜂0 + (𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝑇𝑇𝑈 + 𝐵𝐵𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝑇𝑇𝑈 � 𝑒𝑒
− 1
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐)

𝐼𝐼𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇 = 𝑣𝑣(𝑉𝑉𝑑𝑑)
𝑉𝑉𝑐𝑐𝑡𝑡𝑡𝑡

Key highlights

− Dependent on drain voltage only
− Bias-dependent and bias-independent options
− Scales with signal power levels
− Suitable for RF
− Affects threshold voltage, DIBL, AR Resistance.



Trapping Models in ASM-HEMT: TRAPMOD II
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Key highlights

− Dependent on both gate and drain voltages
− Modulates just the drain side access region resistance
− Suitable for PIV simulation
− Affects threshold voltage, DIBL, Subthreshold Slope, 

AR Resistance.



Trapping Models in ASM-HEMT: TRAPMOD III
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𝑅𝑅𝐷𝐷 𝑇𝑇𝑈𝑈𝑣𝑣𝑣𝑣 = 𝑅𝑅𝐷𝐷 +
𝑉𝑉(𝑑𝑑𝑈𝑈𝑣𝑣𝑣𝑣𝑡)
𝑉𝑉𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇 �

𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇𝑁𝑁𝑂𝑂𝑁𝑁

𝐹𝐹𝐹𝐹𝐷𝐷𝑇𝑇𝑇𝑇𝐹𝐹

Key highlights

− Dependent on both gate and drain voltages
− Modulates just the drain side access region resistance for 

dynamic Ron
− Suitable for simulating Power Devices
− Incorporates temperature dependence.



Extraction using pulsed measurements
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− Pulsed IV characterization in dual-pulse mode at a pulse 
frequency of 1000 Hz with a duty-cycle of 0.02 % is 
performed under multiple quiescent drain and gate bias 
conditions such that both the gate and the drain voltages 
are pulsed simultaneously from the quiescent bias point. 

− The pulse width of 200 ns and the measurement window 
of 40 ns within these 200 ns is short enough to ensure iso-
thermal and iso-dynamic measurement of the pulsed-IV 
characteristics.

Pulsed-IV Scheme used to simulate the P-IV Characteristics

Pulsed – IV 
chacteristics for 

multiple quiescent 
conditions – using 

TRAPMOD II 



Our Recent Works



Modeling the Impact of Dynamic Fin-width on the I–V, C–V and 
RF Characteristics of GaN Fin–HEMTs

Nanolab, Indian Institute of Technology Kanpur 93

• New model handles the effective width of the 2DEG channel by considering 
its depletion due to the presence of gates on the sidewalls of the fin. 

• ASM-HEMT models 2DEG while BSIM-CMG models the bias-dependent 
width-modulation due to the sidewalls.

A. U. H. Pampori, S. A. Ahsan, and Y. S. Chauhan, "Modeling the Impact of Dynamic Fin-
width on the I–V, C–V and RF Characteristics of GaN Fin–HEMTs", IEEE Transactions on 
Electron Devices, Vol. 65, Issue 5, pp. 2275-2281, May 2022.

https://doi.org/10.1109/TED.2022.3156966
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A Geometry-scalable model for self-heating in GaN HEMTs

Nanolab, Indian Institute of Technology Kanpur 95

R. Dangi, A. Pampori, P. Kushwaha, E. Yadav, S. Sinha, and Y. S. Chauhan, "A geometry-scalable SPICE compact 
model for self-heating in GaN HEMTs", 80th Device Research Conference (DRC), Ohio, USA, June, 2022.
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S-parameter validation for different gate peripheries
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A Width-Scalable SPICE Model of GaN-HEMTs for X-band Applications
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M. H. Ansari, R. Dangi, A. Pampori, P. Kushwaha, E. Yadav, S. Sinha, and Y. S. Chauhan, "A Width-Scalable SPICE Model of GaN-HEMTs for X-band RF Applications", IEEE 
Electron Devices Technology and Manufacturing Conference (EDTM), Seoul, Korea, Mar. 2023.



Width scalability for large gate peripheries 
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Small and large signal RF validation for different gate peripheries
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Modeling of Bias-Dependent Effective Velocity and Its Impact 
on Saturation Transconductance in AlGaN/GaN HEMTs

Nanolab, Indian Institute of Technology Kanpur 101

• There is progressive decrease in the saturation velocity in GaN
HEMTs with increasing Vgs.

• This is predominantly due to the scattering of electrons, forming 
the high-density 2DEG, by optical phonons at high overdrive 
voltages. 

• This dependence differs from the traditional mobility 
degradation models.

The difference in the modeled slope (colored areas) 
increases with increasing drain bias. This is overcome 
by considering a bias-dependent veff.

2 μm × 100 μm device

A. U. H. Pampori, S. A. Ahsan, R. Dangi, U. Goyal, S. K. Tomar, M. Mishra and Y. S. Chauhan, "Modeling of Bias Dependent Effective Velocity and its 
Impact on Saturation Transconductance in AlGaN/GaN HEMTs", IEEE Transactions on Electron Devices, Vol. 68, Issue 7, pp. 3302 - 3307, July 2021.

https://doi.org/10.1109/TED.2021.3078717
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Fig. S-parameters (500 M0Hz–10 GHz) for three different drain-bias conditions 
[(a) Vd =10mV, (b) Vd = 5V, and (c) Vd = 10V] and multiple gate bias conditions 
[−6 (OFF-state) to −2 (Class A bias) with a step of 1 V]. Symbols – measurement, 
model – lines. S21 for 5 and 10 V has been scaled by a factor of 4.5. 

Device size: 2 μm × 100 μm.
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Modeling Cryogenic effects in GaN HEMTs
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M. S. Nazir, P. Kushwaha, A. Pampori, S. A. Ahsan, and Y. S. Chauhan, "Electrical Characterization and Modeling of GaN HEMTs at Cryogenic 
Temperatures", IEEE Transactions on Electron Devices, Vol. 69, Issue 11, November 2022.

https://doi.org/10.1109/TED.2022.3204523


Kink effect at cryogenic temperatures
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Fig: Measurement (Symbols) and Simulated (Solid lines) for VGS values shown in legends: (a) IDS - VDS characteristics at 10K with observable kink (b) IDS - VDS
characteristics at 60K with observable kink (c) IDS - VDS characteristics at 300K with no significant kink.



Kink effect at 3 different biases and temperatures
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Fig: Measurement (Symbols) and Simulated (Solid lines) for VDS values shown in legends: VDS = 5V denotes the pre-kink region and
VDS = (15V and 20V) denote the post-kink region (a) IDS - VGS characteristics at 10K. (b) IDS - VGS characteristics at 60K. (c) IDS -
VGS characteristics at 300K with no significant kink observed.



RF Switch Modeling
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Figure. (a) Die micrograph of the 0.5 um node, 10 x 100 um dual- gate depletion-mode GaN-on-Si switch. (b) The 
equivalent small-signal model of the dual-gate GaN switch device. The intrinsic model is shown in red and the parasitic 
components are shown in blue. Elements with 'i' subscripts denote intrinsic capacitances, ‘fr’ subscripts denote fringing 
capacitances and p subscripts denote parasitic elements.



IV and RF modeling for dual-gate GaN Switch
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Small signal model including parasitic components
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Modeling harmonics and insertion loss for a switch
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