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Those Upsetting lons-The Effects
of Radiation on Electronics
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Basic Radiation Damage Mechanisms
Transient Effects

History of Awareness of these effects
HCL/MGH Test Program
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Trapped charge changes/degrades performance
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Fig. 4.4 MOS characteristics: typical variation of (a) capacitance and (b) drain current
with gate voltage, showing the shifts in flatband and threshold voltages due to

trapped charge (no interface states).



Transient Effects: Single Event Upset
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Single Event Latchup in CMOS Structures

Silicon Controlled Rectifier (SCR) or Thyristor
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Single Event Burnout (SEB) in Power MOSFETs

This effect was first noticed in high power components used in
railway power supplies. The mechanism is described thusly;

“SEB is triggered when a heavy ion passes through a power MOSFET biased in
the off state (blocking a high drain-source voltage). Transient currents generated
by the heavy ion turn on a parasitic BJT inherent to the device structure. Because
of a regenerative feedback mechanism, collector currents in the BJT increase to
the point where second breakdown sets in, creating a permanent short between the

source and drain and rendering the MOSFET useless.” (From G. H. Johnson, J.
M. Palau, C. Dachs, K. F. Galloway, and R. D.Schrimpf, “A review of the
techniques used for modeling single-event effects in power MOSFETSs, ” IEEE
Trans. Nucl. Sci, vol. 43, no. 2, pp.546-560, Apr. 1996

The mechanism is essentially the same when triggered by the
charged secondaries produced by a neutron or proton strike on a
silicon nucleus.



Types of Radiation Damage/Effects:

1.Permanent or Long Term Deterministic
Displacement Damage
Trapped Charge

2. Transient Stochastic
Single Event Upset (SEU)
Single Event Latch Up (SEL)
Single Event __ (Fill in the blank!)
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SATELLITE ANOMALIES FROM GALACTIC COSMIC RAYS

D. Binder, E. C. Smith, and A. B, Holman
Hughes Aircraft Company
Culver City, California 90230

Introduction

Anomalies in communication satellite operation
have been caused by the unexpected triggering of
digital circuits. Although the majority of these
events have been attributed to charge buildup from

high temperature plasmas,{1‘E] some of the events
appear to be caused by another mechanism. The pur-
pose of this paper is to investigate interactioms with
galactic cosmic rays as an additional mechanism.

The satellite anomalies studied were caused by
the triggering of flip=-flop circuits., The particular
mechanism assumed for the cosmic ray interaction was
the charging of the base-emitter capacitance of
critical transistors to the turn-onm voltage. The
charge is produced by the dense jonization track of an
energetic, high-I cosmic ray.

The following sections describe the determination
of the number of sensitive transistors, the charge
collection efficiency, the transistor parameters, and
the energy spectrum of the penetrating cosmic rays.
A1l these guantities were required as input data for a
computer code called CRAC, developed for this problem.
The code was used to calculate the solid angle in
which cosmic rays supplied sufficient energy to turn
on the transistors. The theoretical event rate was
then calculated and compared with satellite data.
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Figure 1. J-K Flip-Flop Circuit with Transistor States
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S0FT ERRORS IHDUCED BY EWERGETIC FROTONS

E.C.Wyate, P.J.HcHulty, and F.Tocumbas
Clarkson Callege of Technology
Fotadam, H.Y¥Y. L3676

F.L.Bothwell and R.GC.Filz
&ir Force Geophysics lLaboratoey
Hanscom Afir Force Base, ®Ma OL731

l. Introduction

There has been considerable recent interest
in the soft error phencmena in semiconductor memory
devices. 1~ Soft memory errors take the Fform
of anomolous changes in the information stored
in a memory device [lown in space without ebservable
damage to the device itself. Soft errors were
first observed in bipolar digital components -
J-K flip-flops.!  The soft-error rates in satellite
systems  have increased significantly recently,
presumably because of the increased use of large-
scale integrated (LSI) devices2-3 The decrease
in wolume of a sensitive element implies a corres-
ponding decrease in the stored charge and in the
number of dionm palrs necessary to induce a soft
BTTOT,

The primary mechanism for the soft errors
in LS1 devices 1is believed to be the passage of
a heavy cosmic-ray nucleus through a memory storage
element where the energy deposited by the particle
traversing Che element creates a sufficient number
of electron-hole pairs at or near the depletion
region to neutralize the stored charge.l's' According
to this hypothesis, all seft errors should be one
te zero for memory elements in which the data is
stored true and gzerc to one for elements which
store information in complement form. Any devices
of comparable geometry on the microscopic level
should have equal probability of exhibiting soft
ErTOTS. According to the primary mechanism LST
devices should be sensitive to heavily ienizing
particles that have values of linear energy transfer
(LET) above some threshold value.

Buclear iInteractions provide & possible alter-

BALive mechanism for the selt errors. The secondary
particles (mostly protoms and alphas)  eme rging
from inelastic nuclear interactions may ionize

a sufficient number of acoms alang their trajectaries
ta change che stste of a3 nearby memory element.
May &and UWoocds have recently observed soft errors
induwced by alpha parciclies, and Taney et  al
report peak sensitivity for & maximum alpka enecgy
of  3-4 HeV, The recoiling nucleus canm provide
considerable  local  fonization  loss. Aradfard?
khas peointed our that nuclear pesctions can cenbri-
bute re the sofr errers, especlally for WLSL where
the threshold energy that must be deposited for
a seft error s expected toa be below | MeV. Pree
liminary calculations by Farrell  and HcHult;.-E'
indicare that Che muclear rFeceil in i laar ic
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Twe types of 4K w L dynamic RAM, Imcel C2I07R

and HMational semiconductor MM<S5IRY, were srudied

in tchese investigations. Both devices cane in

ceramic packages with metal lids, which wers remaved

for Llow energy proton  exposuces, The eonergecic

proton  exposures wWere caFried GuE ak the HWarvard
Cyclotron amd  dncluded anergies of 18, 32, 351,

9l, and 130 Me¥. The energy of the protons was
controlled by inserting lucite degraders in  the
beam. This Entroduced consdderable apread  in

the bean energy for the lower ecnergies, (FWlMs
wepe =~ 17, L&, 1@, & HeV [or the 18, 32, 351, and

133 MeV beams, respecciwely.) The ©@.95, 1.3, and




IBM Experiments to show that terrestrial neutrons
are a significant source of failures (1982-1988)

Field Repair Rate (Arb. Units)

Denver

USA Area 10
(CO, WY, NM, AZ)

Incident
Primary e+ — Positron
Particle e~ — Electron
Y — Gamma Ray
1t — Pion
1 — Muon

N, P — High-energy Nucleons

n, p — Disintegration Product
Nucleons

R‘ Nuclear Disintegration

'

1
',' Low-em?rgy
! nucleonic
i component
- O— (disintegration
n product neutrons

degenerate to

Electromagnetic " "
slow" neutrons)

or "Soft" pn
Component Meson or N
"Hard"
Component P
Nucleonic
Component

From “SER-History, Trends and Challenges’

1)
L+]
=
[=
= 5000
£
-

0
g 2
e
.
£a E
B
g
wl

. . Lendville. OO &7
B Experimueniyl Muil rales - {-}
: D Main memeTy T
& Cache memary e"’:-,%\'.ff"
i; -
i R
pt
— /3 Licover
Foi LS. (all sysiems)
S o | L | L L | L L L
b 10
Bail rate ——=
Cosmic rey tlox =
L4 12
r———
&
| /_',,-'"
- .ﬂ/
B / LUnderground:
.- ; zZero fails in
? ! five months
Typical Sea Level Neutron Flux
| [ T T
6 T T
}' T High-Energy
! | Neutrons
. J*e‘ﬁ;m's 10-1000 MeV
e i 17 0.01-0.2 eV | f
£ 4 I = a | ki
£
L4
§ 3 T Spallation
§ | Neutrons
2 T 1 71 0.1-5MeV [
2 — t
| l | \
—
0 mlm 1l NN “ I

109108]0710610510‘10310710‘ 100 10‘ 102 103 104

Neutron Energy (MeV)

>, James F. Ziegler and Helmut Puchner (Cypress)



Harvard Cyclotron circa 1950



Andreas (“Andy”) Koehler
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Not much changed for the cyclotron equipment over the years



Mr. and Mrs. Robert Birge 1949

Or with the working environment
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Chip under test illuminated by proton beam

New (equivalent) beamline at MGH



Dosimetry control unit from
HCL at MGH with additions

Recent replacement
units at MGH
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Effect on Bragg Peak distal fall
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Rotating Condenser

From “The Harvard University 95 Inch Cyclotron
Design, Construction, and Preliminary Operating Instructions”

July 1950, Office of Naval Research



One issue is “recombination” signal loss in the monitor ion chamber. If the flux density is
too high some of the ion/electron pairs will re-combine before they can be collected in the
signal foil. Narrow gap between the foils is best way to avoid this. HCL ion chambers
were built with very narrow gap due to low duty cycle/high instantaneous beam current.
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Measurements of
areal density
(weight/area) of
pieces from 1967
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Measurement of energy spectrum of solar flare

wheel (<125 MeV) done with “Harshaw Nal(T1)
Integral Line Scintillation Detector”
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From E. W. Cascio and S. Sarkar “A Solar Flare Simulation Wheel for the Radiation Test Beamline at The Francis
H. Burr Proton Therapy Center”, IEEE Transactions on Nuclear Science, Vol. 55, NO. 6 (2008)
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