TROC16_16 Documentation[footnoteRef:1] [1: “A Digital Processor of RISC Variety Suitable for Architecture Exploration” presentation slide deck is available at web pages: https://events.vtools.ieee.org/m/467923 and https://github.com/jimbrake/TROC16_16]

James Brakefield
TROC16_16 is a soft core processor with 16+ bit instructions and 16-bit addressing and data. The ISA (Instruction Set Architecture) is a subset of a larger ISA that supports four data types on four data sizes each. TROC16_16 only supports two data sizes of 8 and 16-bits. It is of the RISC variety with 32 registers of 16-bits each, plus four tag bits, two of which hold the data type and the other two, additional exponent bits. By using tag bits to hold the data type, distinct instructions for each data type are unnecessary, except for memory load instructions.
There are three sizes of instructions: 16, 24 and 32-bits. For TROC16_16 the 16-bit instructions play a major role. There are 32 of them providing a decent yet minimal set. The 24-bit instructions have three register address fields providing R operation S => D whereas the 16-bit instructions only provide S operation D => D. The 32-bit instructions contain a fourth register address field and additional op-code bits: operation (T, R, S) => D. There are approximately forty-four 24 and 32-bit instructions each with a more complete instruction set.
Most instructions have and immediate form where the left most register field can be used as an immediate value (constant, offset, displacement). The encoding of the immediate value field includes provision for indicating additional immediate bytes such that a full size immediate can be affixed to the base instruction. For offsets and displacements the immediate is interpreted as two’s complement. For constants it is interpreted per the type code of the D register. For 16-bit instructions the immediate replaces S, for 24-bit instructions it replaces R and for 32-bit T.
At this time, instructions are half-word aligned and instruction plus immediate limited to 32-bits total. Two 16-bit instructions without immediate values will fit into 32-bits. The 24 and 32-bit instructions have a full set of load and store instructions (twenty four each) that include base register, index register scaled by data size and an offset. For 24-bit one can have either and index register or an immediate offset, not both.
The base set of ALU incudes add, subtract, multiply, divide, compare, AND, OR & XOR. Divide may or may not be implemented as it takes considerable logic and delay. The four data types are nominally unsigned, signed two’s complement, floating point and fixed point logarithm. Several varieties of floating-point are possible. For TROC16_16 it is eight or 16-bit floats only.
Two of the 32 registers in the register file are “special”. Register 31 is PC (Program Counter) and register 28 is the “Residue” register. The residue register receives the carry and overflow from unsigned and 2’s complement add/subtract, the upper half of a multiply and the remainder of a divide. The use of the PC as a destination register is limited to where it makes sense, otherwise causes a trap.

Instruction and Immediate encodings
“Little Endian” (interpret right to left)
16-bit	op-code specifies N or S
sssss ddddd xxxxx1
nnnnn ddddd xxxxx1

24-bit	has immediate enable bit
rrrrr 0 xx sssss ddddd xxxx10
nnnnn 1 xx sssss ddddd xxxx10

32-bit	has three additional op-code bits
ttttt xxx rrrrr 0 xx sssss ddddd xxxx00
nnnnn xxx rrrrr 1 xx sssss ddddd xxxx00

16-bit instruction encoding of N
NNNNN -15 … =15
NNNNNNNNNNNNNNNN 10000 	-215 … 215-1

Suggested 24 and 32-bit instruction encoding of N
111NN and 10NNN		 -4 … +7
NNNNNNNNNNNNNNNN 0NNNN 12-bit N 	-211 … 211-1
NNNN … NNNN 110xx 	 8, 16, 24 or 32-bit N

Floating point references
Half-precision floating-point forma, aka float16:
https://en.wikipedia.org/wiki/Half-precision_floating-point_format
Logarithmic Fixed-Point Numbers:
https://ccrma.stanford.edu/~jos/st/Logarithmic_Fixed_Point_Numbers.html
Also do google search on “fixed point binary logarithm?”

16-bit instructions
INN, OUTN 					input/output to port N or to Mem (N)
BSRN, BRZN, BRNZN, BRPN, BRMN		control instructions (PC+N)
MOV						move register:		S => D
ADD, SUB, MUL, DIV, CMP, AND, OR, XOR	basic arithmetic:	S op D => D
ADDI, SUBI, MULI, DIVI, CMPI, ANDI, ORI, XORI	immediate versions:	I op D => D
LDUI, LDSI, LDFI, LDF2I		load typed data immediate:		I => D
SHFTN				shift/adjust exponent:			D << N => D
EXTCTN				extract field, type-less:	field N of D => D, N has start bit & bit width
LDTN, STTN			load/store typed-data to Mem (N), uses two half word locations
24 and 32-bit instructions

LDU8, LDU16, LDU24, LDU32,
LD8, LD16, LD24, LD32,
FLD8, FLD16, FLD24, FLD32,
F2LD8, F2LD16, F2LD24, F2LD32,
LEA8, LEA16, LEA24, LEA32,
ST8, ST16, ST24, ST32,
ADD, ADDI, SUB, SUBI,
MUL, MULI, MAC, DIV, DIVI,
AND, ANDI, OR, ORI,
XOR, XORI, CMP, CMPI,
FATAN2PI, FPOW, FPOWI,
INSRT, INSRTI, EXTRCT, EXTRCTI,
ROL, ROLI, SHR, SHRI,
ASR, ASRI, SHL, SHLI,
JMPcc, CALLcc, BRcc, BSRcc,
BBS, BBC, BRccRC, JMPccRC,
MAX, MAXI, MIN, MINI,
MEDIAN, EADD, EADDI,
VECT, LOOP, LOOPI (My 66000 instructions)
TRAP, BKPT, ALIGNW, ALIGNC

Three operand only (32-bit)
MMOV, PCND, PCB1, STM,
LDM, STM, CASE, MUX, MERGE

~32 single operand (24-bit)
LDZCNT, LD1CNT, TRZCNT, TR1CNT
POPCNT, SINPI, COSPI, TANPI,
ASINPI, ACOSPI, ATANPI, …

FPGA Implementation[footnoteRef:2]: [2: VHDL source code at: https://github.com/jimbrake/TROC16_16]

[image:]

Detailed Instruction Descriptions
For signed and unsigned operands
INN:	If N >= -15 and N <= 15: Port (N) => D otherwise reference memory location N
	N >= 0 are the input ports and N < 0 are internal registers. Sixteen bit data size.
OUTN:	If N >= -15 and N <= 15: D => Port (N) otherwise reference memory location N
	N >= 0 are the output ports and N < 0 are internal registers. 16 bit data size.
BSRN:	Branch and save relative. Store current PC in register D, set PC to PC + N.
	If D = PC implement as unconditional relative branch
BRZN:	Branch relative if D is zero. If D = 0 set PC to PC + N otherwise go to next instruction
BRNZN:	Branch relative if D is not zero. If D /= 0 set PC to PC + N otherwise go to next instruction
BRPN:	Branch relative if D is positive. If D >= 0 set PC to PC + N otherwise go to next instruction
BRMN:	Branch relative if D is negative. If D >= 0 set PC to PC + N otherwise go to next instruction
MOV:	Move register and its type code: S => D
ADD:	Add S to D: S + D => D: carry (unsigned) or overflow (signed) => Residue register
SUB:	Subtract D from S: S - D => D, carry (unsigned) or overflow (signed) => Residue register
MUL: 	Multiply D and S: S * D => D, upper half of the product => Residue register
	If D = PC block the write to D
DIV:	Divide D by S: D / S => D, remainder => Residue register
	If D = PC block the write to D
CMP:	S – D comparison result => Residue register, format TBD
AND:	Logical AND of S & D => D, Residue register unchanged, type codes ignored
OR: 	Logical OR of S & D => D, Residue register unchanged, type codes ignored
XOR	Logical exclusive OR of S & D => D, Residue register unchanged, type codes ignored
ADDI:	Add I to D: I + D => D: carry (unsigned) or overflow (signed) => Residue register
SUBI:	Subtract D from I: I - D => D, carry (unsigned) or overflow (signed) => Residue register
MULI: 	Multiply D and I: I * D => D, upper half of the product => Residue register
	If D = PC block the write to D
DIVI:	Divide D by I: D / I => D, remainder => Residue register
	If D = PC block the write to D
CMPI:	I – D comparison result => Residue register, format TBD
ANDI:	Logical AND of I & D => D, Residue register unchanged, type codes ignored
ORI: 	Logical OR of I & D => D, Residue register unchanged, type codes ignored
XORI:	Logical exclusive OR of I & D => D, Residue register unchanged, type codes ignored
LDUI:	Immediate value placed in D as unsigned
LDSI:	Immediate value placed in D as signed
LDFI:	Immediate value placed in D as float type 1, typical format is IEEE-754 Float16
	If D = PC it is an invalid instruction
LDF2I:	Immediate value placed in D as float type 2, typical format is fixed point base two logarithm
	If D = PC it is an invalid instruction
SHFTN:	Shift D by signed N: D << N => D. Unsigned uses logical shift, Signed uses arithmetic shift.
	If D = PC it is an invalid instruction
EXTCTN: Extract field, field N of D => D, N has 12-bit start bit & bit width format: --wwww --ssss
	Type codes ignored. Unsigned and 2’s complement sign extension.
A W of zero maps to a width of 16-bits. Bit zero is the least significant bit (LSB).
	If D = PC it is an invalid instruction
LDTN:	Load typed data from Mem (N) to D, uses two half word memory locations
STTN:	Store typed data from D to Mem (N), uses two half word memory locations
Selected 24-bit instructions, ds: data size in bytes
Float and Float2 undergo reformatting between memory and register
Unsigned and signed undergo zero or sign extension on loads
For TROC16_16 immediate R aka N limited to 12-bits
LDU8, LDU16:	Load 8 or 16 bit unsigned data from memory location (S + R*ds) or (B + N) => D
		If R = PC use zero in its place
LDS8, LDS16:	Load 8 or 16 bit signed data from memory location (S + R*ds) or (B + N) => D
		If R = PC use zero in its place
FLD8, FLD16:	Load 8 or 16 bit float data from memory location (S + R*ds) or (B + N) => D
		If D = PC it is an invalid instruction
F2LD8, F2LD16:	Load 8 or 16 bit float2 data from memory location (S + R*ds) or (B + N) => D
		If D = PC it is an invalid instruction
LEA8, LEA16:	Place effective memory address (S + R*ds) or (B + N) into D
		If R = PC use zero in its place
ST8, ST16 	Store 8 or 16 bit data from D into Memory location (S + R*ds) or (B + N)
Selected 32-bit instructions, y: 1 to 4 scaling
For TROC16_16 immediate T aka N limited to 5-bits
LDU8, LDU16:	Load 8 or 16 bit unsigned data from memory location (S + R*ds*y+ T) => D
		If R = PC use zero in its place
LDS8, LDS16:	Load 8 or 16 bit signed data from memory location (S + R*ds*y+ T) => D
		If R = PC use zero in its place
FLD8, FLD16:	Load 8 or 16 bit float data from memory location (S + R*ds*y+ T) => D
		If D = PC it is an invalid instruction
F2LD8, F2LD16:	Load 8 or 16 bit float2 data from memory location (S + R*ds*y+ T) => D
		If D = PC it is an invalid instruction
LEA8, LEA16:	Place effective memory address (S + R*ds*y+ T) into D
		If R = PC use zero in its place
ST8, ST16 	Store 8 or 16 bit data from D into memory location (S + R*ds*y+ T)
		If R = PC use zero in its place

Use of the PC as a general purpose register
Cases where use of PC as general purpose register makes sense:
ADD, ADDI	Unconditional relative branch
MOV		Jump to address, such as return from subroutine
LEA		Indexed jump, better handled by a CASE instruction with index limit
LDUI, LDSI	Absolute address jump
LDU16, LDS16	Table lookup jump
As an index register: replace by zero, e.g. a useful way to disable use of index register

Cases where use of PC as general purpose register does not make sense:
BSR		Is a conflict of two separate writes to PC
INN		Not likely to be useful
SHFTN, LDFI, LDF2, LDF, LDF2I
As an offset: could be useful if base register is not a base address
Any instruction that generates a float tag on PC
In general, prohibit these uses and take an interrupt
[bookmark: _GoBack]
Mixed data type operations:
There is no requirement that operations on mixed data types be implemented
If not implemented, a suitable instruction trap is taken
Exception and interrupt mechanisms
There is a need for:
A return address register for interrupt routines
A configuration register which enables optional features and rounding modes
An interrupt enable register
An interrupt pending register
An interrupt state, e.g. the current interrupt cause number, zero in non-interrupt mode
A dispatch table (probably dedicated memory area) and numbering of interrupt causes
Cache, virtual memory and protection mechanisms TBD
Unimplemented instructions and invalid operands
 To lead to exceptions as determined by configuration register
 For the time being for testing purposes these cause a halt (freeze of the PC)
Preferred implementation is a small register file with configuration always visible
 And interrupt enables usually visible (8-bits wide with three read ports?)
 INN/OUTN instructions can read/write any of the internal registers

image1.png
Trocl6_16 block diagram

write enables on all registers and both RAMs
Memory read data (32 bits)

Input pins

Combinatorial
logic

Adders,

MUXes,
state . Dual port

Update enables,
Etc. Block RAM
PC/mem address 1024x16

Memory write data 16/32 bits

clocked —>{ Output register(s)

