Modelaje y extracción de parámetros de celdas y paneles solares

Adelmo Ortiz-Conde

Solid State Electronics Laboratory Universidad Simón Bolívar Caracas, Venezuela

E-mail addresses: ortizc@usb.ve , ortizc@ieee.org

Distinguished Lecture Program

Introducción

•El modelaje y la extracción de parámetros en los paneles solares es un tema muy importante para poder optimizar el uso de la energía solar.

 Revisaremos en forma crítica los métodos mas importantes y las ideas que los motivaron.

•Los métodos serán comparados usando mediciones y simulaciones.

Contenido:

- 1. Diodo con una exponencial sin resistencia
- 2. Diodo con una exponencial con resistencia
- 3. Diodo con una exponencial con resistencias serie y paralela
- 4. Diodo con doble exponencial
- 5. Diodo con múltiples exponenciales
- 6. Celdas solares con una exponencial
- 7. Métodos de extracción en celdas solares
- 8. Celdas solares con múltiples exponenciales
- 9. Resumen

1. Single-exponential model without resistance [SA57]

2. Single-exponential model with series resistance

where W and ω are the Lambert and Wright functions respectively.

R_s is important for high voltage and it decreases the region where ln(I) is proportional to V.

[OR99] A. Ortiz-Conde, Yuanshen Ma, J. Thomson, E. Santos, J. J. Liou, F. J. García Sánchez, M. Lei, J. Finol and P. Layman, "Direct extraction of semiconductor device parameters using lateral optimization method", Solid-State Electronics, vol. 43, pp. 845-848, April 1999. <u>http://dx.doi.org/10.1016/S0038-1101(99)00044-1</u>

Properties of Lambert W, Wright ω , and g functions

Function	Inverse	Identity	Property
Lambert W(x)	$\mathbf{x} = \mathbf{y}e^{\mathbf{y}}$	$\mathbf{W}(\mathbf{x})$	multiple valued
Wright $\omega(x)$	$\mathbf{x} = \mathbf{y} + \ln(\mathbf{y})$	$\boldsymbol{\omega}(\boldsymbol{x})$ =W($\boldsymbol{e}^{\boldsymbol{x}}$)	single valued
Log-Wright or g(x)	$\mathbf{x} = \mathbf{y} + e^{\mathbf{y}}$	$\mathbf{g}(\mathbf{x}) = \ln[\mathbf{W}(e^x)] = \mathbf{x} \cdot \mathbf{W}(e^x)$	single valued

"On the MOSFET charge control ...", SEMINATEC, São Bernardo do Campo, Brazil, April 2025, A. Ortiz-Conde 6

Lambert, Wright ω , and g functions

In MOSFET and solar cells, the solution is $\omega(x)=W(e^x)$.

The $W(e^x)$ solution is mathematically correct, but the exponential could yield underflow or overflow [R015, LA23 CA25].

The Wright ω function [LA23]: "addresses the overflow problem by mathematically modifying the Lambert W function such that intermediate arguments with large numerical magnitudes are avoided".

The Log-Wright function, $g(x) = \ln[W(e^x)]$ can be easily implemented by using the Halleys' method [RO15, CA25]:

$$y_{n+1} = y_n - \frac{2(y_n + e^{y_n} - x)(1 + e^{y_n})}{2(1 + e^{y_n})^2 - (y_n + e^{y_n} - x)e^{y_n}}$$

[RO15] K. Roberts, "A Robust Approximation to a Lambert-Type Function", 2015. https://arxiv.org/abs/1504.01964

[LA23] Lankireddy, P. et al., "Solar Cells, Lambert W and the LogWright Functions", Int. Conf. on Electrical, Computer and Energy Techn., ICECET 2023.

https://doi.org/10.1109/ICECET58911.2023.10389599

[CA25] M. Calasan, "Iterative methods for solving g-functions: a review, comparative evaluation, and application in the solar cell domain", Journal of Computational Electronics, 24:58, 2025. <u>https://doi.org/10.1007/s10825-025-02298-2</u>

"On the MOSFET charge control ...", SEMINATEC, São Bernardo do Campo, Brazil, April 2025, A. Ortiz-Conde 7

2.1 Vertical optimization method using the implicit equation

Minimizing the errors on the current which is numerically solve from the implicit equation:

$$I = I_o \left[\exp\left(\frac{V - R_S I}{n v_{th}}\right) - 1 \right]$$

It is not computationally efficient.

2.2 Vertical optimization method using the vertical equation [HR06] Minimizing the errors on the current which is evaluated using:

$$I = \frac{nv_{th}}{R_S} W \left[exp \left[\frac{V + I_0 R_S}{nv_{th}} + ln \left(\frac{I_0 R_S}{nv_{th}} \right) \right] \right] - I_0$$
$$I = \frac{nv_{th}}{R_S} \omega \left[\frac{V + I_0 R_S}{nv_{th}} + ln \left(\frac{I_0 R_S}{nv_{th}} \right) \right] - I_0$$

It is computationally efficient but it requires using the Lambert or Wright functions.

[HR06] Hruska, P., Chobola, Z., Grmela, L., "Diode I-U curve fitting with Lambert W function", 25th International Conference on Microelectronics (MIEL), pp. 501-504., 2006. http://dx.doi.org/10.1109/ICMEL.2006.1651003.

2.3 Lateral optimization method using the lateral equation [BE87;OR99]

[BE87] Bennett, R.J., "Interpretation of forward bias behavior of schottky barriers", IEEE Transactions on Electron Devices ED-34 (4) , pp. 935-937, 1987. <u>http://dx.doi.org/10.1109/T-ED.1987.23020</u>

[OR99] A. Ortiz-Conde, Yuanshen Ma, J. Thomson, E. Santos, J. J. Liou, F. J. García Sánchez, M. Lei, J. Finol and P. Layman, "Direct extraction of semiconductor device parameters using lateral optimization method", Solid-State Electronics, vol. 43, pp. 845-848, April 1999. http://dx.doi.org/10.1016/S0038-1101(99)00044-1

2.4 Integration method to extract n and R_s for diodes [OR93,95]

Using *V*(*I*) and integration by part yields

$$\int_{0}^{V} I \, dV = V \, I - \int_{0}^{I} V \, dI = \frac{R_{s}}{2} I^{2} + n \, v_{th} \, I - I_{0} \, V$$
$$V = R_{s} \, I + n \, v_{th} \ln \left(1 + \frac{I}{I_{0}}\right)$$
$$I_{0}: \int_{0}^{V} I \, dV \approx \frac{R_{s}}{2} I^{2} + n \, v_{th} \, I$$

[OR93] A. Ortiz-Conde, F.J. García Sánchez, P.E. Schmidt, and R.J. Laurence, Jr., "Extraction of diode parameters from the integration of the forward current", Proc. of the Second International Semiconductor Device Research Symposium (Charlottesville, Virginia), vol. 2, pp. 531-534, Dec. 1993.

[OR95] A. Ortiz-Conde, F.J. García Sánchez, J.J. Liou, J. Andrian, R.J. Laurence, and P.E. Schmidt, "A generalized model for a two-terminal device and its application to parameters extraction", Solid-State Electronics, vol. 38, pp. 265-266, Jan. 1995. <u>http://dx.doi.org/10.1016/0038-1101(94)00141-2</u>

2.4.1 The Integral Difference Function and the G method [GA95,96]

$$D \equiv C - CC = \int_{0}^{i_{m}} v di - \int_{0}^{v_{m}} i dv = iv - 2\int_{0}^{v_{m}} i dv = 2\int_{0}^{i_{m}} v di - iv$$

[GA95] F. J. García Sánchez, A. Ortiz-Conde, G. Mercato, J. J. Liou, and L. Recht, "Eliminating parasitic resistances in parameter extraction of semiconductor device models", Int. Caracas Conf. on Cir. Dev. and Sys., pp. 298-302, Dec. 1995. <u>http://dx.doi.org/10.1109/ICCDCS.1995.499164</u> [GA96] F.J. García Sánchez, A. Ortiz-Conde, and J.J. Liou, "A parasitic series resistance-independent method for device-model parameter extraction", IEE Proc. Cir. Dev. and Sys., vol. 143, pp. 68-70, Feb. 1996. <u>http://dx.doi.org/10.1049/ip-cds:19960159</u>

[CH73] L. Chua, "Stationary principles and potential functions for nonlinear networks," J. Franklin Inst., 296, 91-114, 1973. <u>http://dx.doi.org/10.1016/0016-0032(73)90077-X</u>

2.4.1 The Integral Difference Function and the G method

Eliminating series resistance

Calculate D:

$$D = IV - 2\int_{0}^{V} IdV = D_{J} + D_{R_{S}}^{0}$$
Substituting Shockley's
equation for $I >> I_{0}$: $D = D_{J} \approx I nv_{th} [\ln(I/I_{0}) - 2]$
New function: G
 $2^{\circ} \rightarrow G \equiv D/I$
 $\approx n v_{th} \{\ln(I) - [\ln(I_{0}) + 2]\}$
slope intersection $\ln(I)$

2.4.1 The Integral Difference Function and the G method $G \approx n v_{th} \left\{ \ln (I) - \left[\ln (I_0) + 2 \right] \right\}$

The extracted values of n=1.03 and $I_0=5.5\times10^{-10}$ A are very close to previously obtained by lateral optimization: n=1.05 and $I_0=5.8\times10^{-10}$ A

2.4.2 The $\triangle G$ method [OR18]

Using previous result: $G \equiv D/I \equiv V - \frac{2}{I} \int_0^V I \, dV \approx n \, v_{th} \left[\ln \left(I/I_0 \right) - 2 \right]$ Defining: $\Delta G(V, I) \equiv G(V, I) - G(V_R, I_R) = n \, v_{th} \ln \left(I/I_R \right)$

where (V_R, I_R) is a selected reference point

Parameter *n* is obtained:

Then

$$n = \frac{\Delta G(V, I)}{v_{th} \ln (I/I_R)}$$
$$I_0 = \frac{I}{\exp \left(\frac{G}{n v_{th}} + 2\right)}$$

Finally
$$R = \frac{V}{I} - \frac{n v_{th}}{I} \ln\left(\frac{I}{I_0} + 1\right) \approx \frac{V}{I} - \frac{n v_{th}}{I} \ln\left(\frac{I}{I_0}\right)$$

This method isolates the effects of each of the parameters.

[OR18] A. Ortiz-Conde and F. J. García Sánchez, "A new approach to the extraction of single exponential diode model parameters ", accepted in Solid-State Electronics, Feb. 2018. <u>https://doi.org/10.1016/j.sse.2018.02.013</u>

2.4.2 The *AG* method

2.5 A METHOD BASED IN DIFFERENTIATION [OR18]

Performing the first and second derivative of V with respect to I:

$$V = R I + n v_{th} \ln\left(1 + \frac{I}{I_0}\right) \qquad \frac{dV}{dI} = R + \frac{n v_{th}}{I + I_0} \qquad \frac{d^2 V}{dI^2} = -\frac{n v_{th}}{(I + I_0)^2}$$

Note that *R* has been eliminated in last equation. Expressing the derivatives of *V* with respect to *I* in term of the derivatives of *I* with respect to *V*:

$$\frac{dV}{dI} = \left(\frac{dI}{dV}\right)^{-1} \qquad \frac{d^2V}{dI^2} = -\frac{\frac{d^2I}{dV^2}}{\left(\frac{dI}{dV}\right)^3}$$

 $\left(\overline{dV}\right)$ Assuming $I >> I_0$ and solving for parameter n: $n \approx -\frac{I^2 \frac{d^2 I}{dV^2}}{\left(\frac{dI}{V}\right)^3}$

Solving for the other parameters:

$$R = \frac{dV}{dI} - \frac{n v_{th}}{I} \qquad I_0 = I \exp\left(\frac{R I - V}{n v_{th}}\right)$$

This method isolates the effects of each of the parameters.

[OR18] A. Ortiz-Conde and F. J. García Sánchez, "A new approach to the extraction of single exponential diode model parameters ", accepted in Solid-State Electronics, Feb. 2018. https://doi.org/10.1016/j.sse.2018.02.013

2.5 A METHOD BASED IN DIFFERENTIATION

The differentiation method is successful with simulated data and it fails with measurements.

The differentiation method is simpler and can be used when the noise in the measured data is very small.

On the other hand, the integration method is more sophisticated and more immune to the noise in the measured data.

2.6 Norde's method [NO79]

This method contains clever mathematical ideas and it was developed for Schottky diodes with n=1. The following notation is adapted to p-n junctions.

Although it is a 46-year-old method, it is still very popular.

Last year, it was cited 80 times.

[NO79] Norde, H., "A modified forward I-V plot for Schottky diodes with high series resistance", Journal of Applied Physics50 (7), pp. 5052-5053, 1979. http://dx.doi.org/10.1063/1.325607

2.6 Norde's method

Norde defined the following function, and we call it by his name:

Norde =
$$\frac{V}{2} - v_{th} \ln\left(\frac{I}{I_x}\right)$$
 (3)

where I_x is an arbitrary value of current. Norde's function presents a minimum value at V_{min} , I_{min} which is independent on the selected value of I_x .

2.6 Norde's method

The minimum value is obtained by deriving (3) and equating it to zero:

$$\frac{d Norde}{dV} = \frac{1}{2} - \frac{v_{th}}{I} \frac{dI}{dV} \qquad (4)$$

Using (2): $\frac{dV}{dI} = R_s + \frac{v_{th}}{I} \quad (5)$

Note that the location of the minimum is independent on the selected value of I_x

Substituting (5) into (4):

$$\frac{d Norde}{dV} = \frac{1}{2} - \frac{v_{th}}{I\left(R_s + \frac{v_{th}}{I}\right)} = \frac{1}{2} - \frac{v_{th}}{IR_s + v_{th}} = 0 \quad (6)$$

$$\boxed{I}$$

$$\boxed{R_s = \frac{v_{th}}{I_{min}}} \quad (7)$$

where I_{min} is the value of the current at the minimum of Norde's function.

2.6 Norde's method Evaluating *I*₀ from (1):

where V_{min} is the value of the voltage at the minimum of Norde's function.

The disadvantages of Norde's method are:

1) The ideality factor is assumed to be unity.

2) The extracted parameters are based on a few data points near the minimum of Norde's function.

We can say that this is a clever transitional method which extract the parameters at a value where the resistance and the diode are important.

2.6 Norde's method

We will test Norde's method using the same experimental data [OR99], which was previously modeled with [OR99]: $I_0 = 580 \text{ pA}$ n = 1.05 $R_s = 33.4 \Omega$

Since n = 1.05 and it should be unity for the present method, we fix $V_{th} = 1.05 \times 0.259$ V

For the three selected value of I_x , the extracted values are: $R_s = 40 \Omega$ $I_0 = 756 \text{ pA}$

2.6 Norde's method The simulation, using the parameters extracted with Norde's method, agrees very well with experimental data for values close to $V_{min} = 0.4$ V.

The limitation of *n*=1 has been removed by various authors [LI84;BO86]

[LI84] Lien, C.-D.; So, F.C.T.; Nicolet, M.A., "An improved forward I-V method for nonideal Schottky diodes with high series resistance", IEEE Trans. Electron Dev., 31, p. 1502-1503, Oct. 1984. http://dx.doi.org/10.1109/T-ED.1984.21739
[BO86] Bohlin, K.E., "Generalized Norde plot including determination of the ideality factor", J. Appl. Phys., 60, p. 1223-1224, 1986. http://dx.doi.org/10.1063/1.337372

3. Single-exponential model with series and parallel resistances

 G_{p1} and G_{p2} are two parallel parasitic conductances, one at the junction and at the other at the periphery.

[OR00] A. Ortiz-Conde, F.J. García Sánchez, J. Muci, "Exact analytical solutions of the forward nonideal diode equation with series and shunt parasitic resistances", Solid-State Electronics, vol. 44, pp. 1861-1864, Oct. 2000. <u>http://dx.doi.org/10.1016/S0038-1101(00)00132-5</u>

3.1 Function D vs I and V [OR05]

Integrating

$$V = -nv_{th} d_2 W \left\{ \frac{I_0 R_{12}}{nv_{th} d_2} \exp\left[\frac{\left(I + \frac{I_0}{d_2}\right)R_{12}}{nv_{th}}\right] + I d_2 \left[R_s + R_{12}\right] + I_0 R_{12}$$

with respect to *I*, and substituting into:

$$D = 2\int_{0}^{I} V dI - IV$$

permits to calculate function *D* in the form of a convenient purely algebraic expression:

()

$$D(I,V) = D_{V1}V + D_{I1}I + D_{V1I}VI + D_{V2}V^{2} + D_{I2}I^{2}$$

[OR05] A. Ortiz-Conde and F. J. García Sánchez, "Extraction of non-ideal junction model parameters from the explicit analytic solutions of its I–V characteristics", Solid-State Electronics, Vol.49, pp. 465-472, March 2005. <u>http://dx.doi.org/10.1016/j.sse.2004.12.001</u>

3.1 Function *D* vs *I* and *V*

where the coefficients are:

$$\begin{aligned} \mathbf{D_{I1}} &= -2R_s I_0 - 2n \, v_{th} \, \left(1 + G_{p1} R_s \right) \\ \mathbf{D_{V1}} &= 2R_s n \, v_{th} G_{p1} G_{p2} + 2I_0 (R_s G_{p2} + 1) + 2n \, v_{th} (G_{p1} + G_{p2}) \\ \mathbf{D_{I1V1}} &= 1 + 2R_s \left(G_{p1} + G_{p2} \right) + 2R_s^2 G_{p1} G_{p2} \\ \mathbf{D_{I2}} &= -R_s \left(1 + G_{p1} R_s \right) \\ \mathbf{D_{V2}} &= -G_{p2} - G_{p1} - 2R_s G_{p1} G_{p2} - R_s G_{p2}^2 - R_s^2 G_{p1} G_{p2} \end{aligned}$$

Unfortunately, the five coefficients are not all independent:

$$D_{IIVI}^2 = 1 + 4 D_{I2} D_{V2}$$

Solving R_s , *n* and I_o :

$$R_{S} = -\mathbf{D}_{\mathbf{I2}} \qquad I_{0} = \frac{\mathbf{D}_{\mathbf{V}}}{2}$$

$$n = -\frac{\mathbf{D}_{\mathbf{I}\mathbf{I}} + 2R_s I_0}{2 v_{th}}$$

 $D_{I1} = -2nv_{th} \qquad D_{I1V1} = 1$ $D_{V1} = 2I_0 + 2nv_{th}G_{p1}$ $D_{V2} = -G_{p1} \qquad D_{I2} = 0$

Solving G_{p1} , *n* and I_o :

$$G_{P1} = -\mathbf{D}_{\mathbf{V2}}$$

$$n = -\frac{\mathbf{D}_{\mathbf{I}\mathbf{I}}}{2v_{th}}$$

$$I_0 = \frac{\mathbf{D}_{\mathbf{V}1} - 2nv_{th}G_{p1}}{2}$$

$$\mathbf{D_{I1}} = -2R_{s}I_{0} - 2nv_{th} \left(1 + G_{p1}R_{s}\right)$$
$$\mathbf{D_{V1}} = 2I_{0} + 2nv_{th}G_{p1} \qquad \mathbf{D_{I1V1}} = 1 + 2R_{s}G_{p1}$$
$$\mathbf{D_{I2}} = -R_{s} \left(1 + G_{p1}R_{s}\right) \qquad \mathbf{D_{V2}} = -G_{p1}$$

Solving R_s , G_{p1} , *n* and I_o :

$$G_{p1} = -\mathbf{D}_{V2}$$
 $R_{S} = \frac{-1 + \sqrt{1 - 4G_{P1}}\mathbf{D}_{I2}}{2G_{P1}}$

$$n = -\frac{\mathbf{D}_{I1} + R_S \mathbf{D}_{V1}}{2v_{th}} \qquad I_0 = \frac{\mathbf{D}_{V1} - 2nv_{th}G_{P1}}{2}$$

$$D_{I1} = -2R_{s}I_{0} - 2nv_{th}$$

$$D_{V1} = 2I_{0} (R_{s}G_{p2} + 1) + 2nv_{th}G_{p2}$$

$$D_{I1V1} = 1 + 2R_{s}G_{p2}$$

$$D_{I2} = -R_{s}$$

$$D_{V2} = -G_{p2} (1 + R_{s}G_{p2})$$

Solving R_s , G_{p2} , *n* and I_0 :

$$R_{S} = -\mathbf{D}_{I2}$$

$$G_{P2} = \frac{-1 + \sqrt{1 - 4R_s \mathbf{D}_{\mathbf{V2}}}}{2R_s}$$

$$I_{0} = \frac{\mathbf{D}_{I1}G_{P2} + \mathbf{D}_{V1}}{2} \qquad n = -\frac{2R_{S}I_{0} + \mathbf{D}_{I1}}{2v_{th}}$$

3.2 Iterative G function method

Implicit equation

$$I = I_s \left(\exp\left[\frac{\left(1 + G_{p2} R_s\right) V - I R_s}{n v_{th}}\right] - 1 \right) + G_{p2} V$$

Vertical equation

$$I = \frac{n v_{th}}{R_S} W_0 \left\{ \frac{I_0 R_S}{n v_{th}} \exp\left[\frac{V + R_S I_0}{n v_{th}}\right] \right\}$$

$$+ G_{P2} V - I_0$$

Lateral equation

$$V = -\frac{n v_{th}}{1 + R_S G_{P2}} W_0 \left[\frac{I_0 \left(1 + R_S G_{P2} \right)}{n v_{th} G_{P2}} \exp \left(\frac{I + I_0 \left(1 + R_S G_{P2} \right)}{n v_{th} G_{P2}} \right) \right] + \frac{I + I_0}{G_{P2}}$$

[RA00] J.C. Ranuárez, A. Ortiz-Conde, F. J. García-Sánchez, "A new method to extract diode parameters under the presence of parasitic series and shunt resistance," Microelectronics Reliability, vol. 40, pp. 355-358 (2000).

http://dx.doi.org/10.1016/S0026-2714(99)00232-2

3.2 Iterative G function method Plot graphs of G vs I_D for several "estimated" G_{p2e} , where

4. Double-exponential diode models

4.1 Lateral optimization using the Quadratic Exponential Model [LU10]

$$\begin{array}{c} \overrightarrow{I} & \overrightarrow{R_s} \\ \overrightarrow{V} & n_1 = 1, I_{01} \\ \overrightarrow{V} & n_2 = 2, I_{02} \\ \end{array} \qquad I = I_{01} \left[\exp\left(\frac{V - IR_s}{v_{th}}\right) - 1 \right] + I_{02} \left[\exp\left(\frac{V - IR_s}{2v_{th}}\right) - 1 \right]$$

There is a solution for V and a global lateral fitting procedure is proposed to extract the parameters:

$$V = R_s I + 2v_{th} \ln \left[\sqrt{\left(\frac{I_{02}}{2I_{01}} + 1\right)^2 + \frac{I}{I_{01}}} - \frac{I_{02}}{2I_{01}} \right]$$

[LU10] D. C. Lugo Muñoz, M. de Souza, M.A. Pavanello, D. Flandre. J. Muci, A. Ortiz-Conde, and F.J. García Sánchez, "Parameter Extraction in Quadratic Exponential Junction Model with Series Resistance using Global Lateral Fitting". 25th Symposium on Microelectronics Technology and Devices (SBMicro-2010). São Paulo, Brasil. Septiembre 2010. See also: Electrochemical Society Transactions, Vol. 31, pp. 369-376, 2010. <u>http://dx.doi.org/10.1149/1.3474181</u>

4.1 Lateral optimization using the Quadratic Exponential Model

Experimental data of a silicon PIN lateral diode from the Université Catolique de Louvain

Good match between the experimental and simulated data.

4.2 Functions A and B [RA99]

Series resistance is negligible at low voltage

Traditional junction model parameter extraction methods are applied to values of the forward current considerably larger than the reverse saturation current, because they assume that the "-1" term in the junction current equation may be neglected.

$$I = I_0 \left(e^{V/nv_{th}} - 1 \right) \approx I_0 e^{V/nv_{th}}$$

Consequently, they do not work at low forward voltages (smaller than a few thermal voltages).

[RA99] J.C. Ranuárez, F. J. García Sánchez, and A. Ortiz-Conde, "Procedure for determining diode parameters at very low forward voltage," Solid-St. Electron., vol. 43, pp. 2129-2133, Dic. 1999. <u>http://dx.doi.org/10.1016/S0038-1101(99)00181-1</u>

4.2 Functions A and B

The application of either one of these operators to the experimentally measured *I-V* characteristics produces linear equations:

$$A \equiv \frac{CC}{I} = \int_0^V I \, dV / I = nv_{th} - I_0 \left(\frac{V}{I}\right)$$
$$B \equiv \frac{CC}{V} = \int_0^V I \, dV / V = nv_{th} \left(\frac{I}{V}\right) - I_0$$

from whose slopes and intercepts the ideality factor and reverse saturation current parameters may be directly extracted. Function *A* has also been used in MOSFET parameter extraction and it is known as function *H* [OR01].

[OR01] A. Ortiz-Conde, A. Cerdeira, M. Estrada, F. J. García Sánchez, R. Quintero, "A simple procedure to extract the threshold voltage of amorphous thin film MOSFETs in the saturation region," Solid-St. Electron., vol. 45, pp. 663-667, Mayo 2001. http://dx.doi.org/10.1016/S0038-1101(01)00123-X

4.2 Functions A and B

Example: Base current as a function of forward base-emitter voltage of a BJT (measured at T = 298K with V_{BC} =0).

Extracted values ($0 < V_{BE} < 100 \text{mV}$): $I_{02} = 215 \text{pA}$, $n_2 = 2$

5. Multiple-exponential diode models

5.1 Alternative multi-exponential model for diode with resistances [LU11]

Conventional model requires numerical solution:

$$I = \sum_{k=1}^{N} I_{0k} \left[\exp\left(\frac{V - R_s I}{n_k v_{th}}\right) - 1 \right] + G_p \left(V - R_s I\right)$$

By solving each branch separately and adding the solutions, the alternative model presents analytical solution for the current:

$$I = \sum_{k=1}^{N} \left\{ \frac{n_{k\,a} v_{th}}{R_{s\,k\,a}} W_0 \left[\frac{R_{s\,k\,a} I_{0\,k\,a}}{n_{k\,a} v_{th}} \exp\left(\frac{V + R_{s\,k\,a} I_{0\,k\,a}}{n_{k\,a} v_{th}}\right) \right] - I_{0\,ka} \right\} + G_{p\,a} V$$

where W₀ is the principal branch of the Lambert function. Vertical optimization is used for parameter extraction.

Analytical equations are desirable for circuit simulation

[LU11] D.C. Lugo-Muñoz, J. Muci, A. Ortiz-Conde, F. J. García Sánchez, M. de Souza, M.A. Pavanello, "An explicit multi-exponential model for semiconductor junctions with series and shunt resistances", Microelectronics Reliability, Vol. 51 pp. 2044–2048, Diciembre de 2011. <u>http://dx.doi.org/10.1016/j.microrel.2011.06.030</u>

5.1 Alternative multi-exponential model for diode with resistances.

Measured I-V characteristics of a lateral SOI PIN diode for a wide range of operating temperatures [LU11b,12].

[LU11b] D.C. Lugo-Muñoz, J. Muci, A. Ortiz-Conde, F.J. García Sánchez, M. de Souza, D. Flandre, M.A. Pavanello, S "Characterization of thin-film SOI PIN diodes from cryogenic to above room using an explicit I-V multi-Branch model", ECS Transactions, Vol. 39 (1), pp. 171-178, 2011. http://dx.doi.org/10.1149/1.3615191 [LU12] D.C. Lugo-Muñoz, J. Muci, A. Ortiz-Conde, F.J. García-Sánchez, M. de Souza, D. Flandre y M. A. Pavanello, "Modeling of Thin-Film Lateral SOI PIN Diodes with an **Alternative Multi-Branch Explicit Current Model**", Journal of Integrated Circuits and Systems (JICS), vol. 7, no. 1, pp. 92-99, 2012.

6. Single-exponential solar cell model 6.1. without resistances

6.1. Single-exponential model without resistance

The power is:

$$P = V I = V \left\{ I_{ph} - I_o \left[\exp\left(\frac{V}{n v_{th}}\right) - 1 \right] \right\}$$

The value of the voltage for maximum power is obtained by deriving the previous equation and equating it to zero:

$$V_{\max} = n v_{ih} \left[W \left(\frac{e(I_0 + I_{ph})}{I_0} \right) - 1 \right] \approx n v_{ih} \left[W \left(\frac{2.718I_{ph}}{I_0} \right) - 1 \right]$$

$$I_{\max} = I_{ph} - I_0 \left\{ \exp \left[W \left(\frac{e(I_0 + I_{ph})}{I_0} \right) - 1 \right] - 1 \right\}$$

$$\approx I_{ph} - I_0 \left\{ \exp \left[W \left(\frac{eI_{ph}}{I_0} \right) - 1 \right] - 1 \right\}$$

$$0 \quad 2e = 0 \quad 4e = 0 \quad 0e = 0 \quad 0e = 0 \quad 1e = 0$$

$$f(A)$$

$$6 \times 10^{-6}$$

$$5 \times 10^{-6}$$

$$2 \times 10^{-6}$$

$$10^{-6}$$

$$10^{-6}$$

$$0$$

$$0.0 \quad 0.2 \quad 0.4 \quad 0.6$$

$$V(V)$$

6

5

4

1

0

Λ

<u>ک</u> ۲ ۲ 1 pA

'sc

80-6

bh

10-5

=

n = 1.5

20-6

10_6

60-6

I_{ph} = 10 μA

6.2. Single-exponential model with series resistance

[JA04] A. Jain, A. Kapoor, "Exact analytical solutions of the parameters of real solar cells using Lambert W-function", Solar Energy Materials and Solar Cells 81 (2), pp. 269-277, 2004. http://dx.doi.org/10.1016/j.solmat.2003.11.018

6.2. Single-exponential model with series resistance

 V_{oc} does not depend on R_s 10 R_s is important close to V_{oc} I_{sc} I_{sc} is approximately equal to I_{ph} 5 Voc (M) 0 $\frac{dV}{dI}\Big|_{V=0, I=I_{SC}} = -R_{S} - \frac{nV_{th}}{I_{ph} + I_{0} - I_{SC}}$ $R_{\rm s}=0$ -5 $R_{\rm s} = 1 \, \mathrm{K}\Omega$ *R*_s = 10 KΩ $\frac{dV}{dI}\Big|_{V=V_{OC}, I=0} = -R_S - \frac{nv_{th}}{I_{ph} + I_0}$ -10 10⁻⁴ $\underbrace{\left(\begin{array}{c} 1 \\ 0 \end{array}\right)}^{I} 10^{-5} \\ I_{O} = 1 \text{ pA} \\ n = 1.5 \\ I_{ph} = 10 \text{ }\mu\text{A} \\ \end{array}$ sc Lateral optimization method can be used: $V = -R_S I + n v_{th} \ln\left(1 + \frac{I_{ph} - I}{I_o}\right)$ V_{oc} **10**⁻⁷ 0.0 0.2 0.4 0.6 0.8 *V*(V)

6.2. Single-exponential model with series resistance

This case does not have analytical solution for the maximum power point.

The power decreases as R_s increases.

The location of the maximum power depends of *R*_s.

6.3. Single-exponential model with parallel resistance

4

$$\begin{array}{c|c} + & \overleftarrow{I} \\ V & G_p \\ \end{array} n, I_0 \\ \hline I_{ph} \\ \end{array} V = \frac{(I_{ph}+I_0-I)}{G_p} - nv_{th} W \left[exp \left[\frac{(I_{ph}+I_0-I)}{G_p nv_{th}} + ln \left(\frac{I_0}{G_p nv_{th}} \right) \right] \right] \\ = \frac{(I_{ph}+I_0-I)}{G_p} - nv_{th} \omega \left[\frac{(I_{ph}+I_0-I)}{G_p nv_{th}} + ln \left(\frac{I_0}{G_p nv_{th}} \right) \right] \end{array}$$

4 parameters:
$$n, I_o, I_{ph}, G_p$$

Vertical equation
$$I = I_{ph} - G_p V - I_o \left[\exp\left(\frac{V}{nv_{th}}\right) - 1 \right]$$

$$I = I_{ph} - G_p V - I_o \left[\exp\left(\frac{V}{nv_{th}}\right) - 1 \right]$$

$$I_{SC} \equiv I \Big|_{V=0} = I_{ph}$$

$$\frac{dI}{dV} \Big|_{V=0, I=I_{SC}} = -G_p - \frac{I_0}{nv_{th}}$$

$$V_{OC} = V \Big|_{I=0} = V$$

$$= V$$

$$e^{(I_{ph}+I_0)} - nv_{th} W \left[exp \left[\frac{(I_{ph}+I_0)}{G_p nv_{th}} + ln \left(\frac{I_0}{G_p nv_{th}} \right) \right] \right]$$

6.3 Single-exponential model with parallel resistance

 $I_{SC} = I_{ph}$ is a constant but G_p is important close to I_{SC}

This case does not have analytical solution for the maximum power point.

6.3 Single-exponential model with parallel resistance

This case does not have analytical solution for the maximum power point.

The power decreases as G_p increases.

The location of the maximum power depends of G_p.

6.4 Model with 5 parameters: n, I_o , I_{ph} , R_s , G_p .

This case does not have analytical solution for the maximum power point.

Implicit equation

$$I = -I_o \left[\exp\left(\frac{V + I R_s}{n V_{th}}\right) - 1 \right] - \left(V + I R_s \right) G_p + I_{ph}$$

$$\begin{array}{l} \text{Vertical} \\ \text{Equation} \\ \text{IJA04]:} & I = \frac{(I_{ph}+I_0)-G_pV}{1+R_SG_p} - \frac{nv_{th}}{R_S}W \left[exp \left[\frac{V+R_S(I_{ph}+I_0)}{nv_{th}(1+R_SG_p)} + ln\left(\frac{I_0R_S}{nv_{th}(1+R_SG_p)}\right) \right] \right] \\ = \frac{(I_{ph}+I_0)-G_pV}{1+R_SG_p} - \frac{nv_{th}}{R_S} \omega \left[\frac{V+R_S(I_{ph}+I_0)}{nv_{th}(1+R_SG_p)} + ln\left(\frac{I_0R_S}{nv_{th}(1+R_SG_p)}\right) \right] \\ = \text{Lateral} \\ \text{Population} \\ V = I \left(R_S + \frac{1}{G_p} \right) + \frac{(I_{ph}+I_0)}{G_p} - nv_{th} W \left[exp \left[\frac{(I_{ph}+I_0-I)}{nv_{th}G_p} + ln\left(\frac{I_0}{nv_{th}G_p}\right) \right] \right] \\ = I \left(R_S + \frac{1}{G_p} \right) + \frac{(I_{ph}+I_0)}{G_p} - nv_{th} \omega \left[\frac{(I_{ph}+I_0-I)}{nv_{th}G_p} + ln\left(\frac{I_0}{nv_{th}G_p}\right) \right] \end{array}$$

[JA04] A. Jain, A. Kapoor, "Exact analytical solutions of the parameters of real solar cells using Lambert W-function", Solar Energy Materials and Solar Cells 81 (2), pp. 269-277, 2004. <u>http://dx.doi.org/10.1016/j.solmat.2003.11.018</u>

7. Parameter extraction methods in solar cells 7.1 First integration method to extract *R*_s for solar cells [AR82]

$$V = +I R_S + nV_T \ln\left(\frac{I + I_{ph}}{I_0} + 1\right)$$

For *I* >> *I*_o and *I*_{ph} >> *I*_o:

$$\int_0^I V \, dI \approx \frac{R_S}{2} I^2 - n v_{th} I + n v_{th} \left(I + I_{ph}\right) \ln\left(\frac{I + I_{ph}}{I_o}\right) - n v_{th} I_{ph} \ln\left(\frac{I_{ph}}{I_o}\right)$$

Then, changing variables R_s is evaluated:

[AR82] G. L. Araujo and E. Sanchez, "New method for experimental determination of the series resistance of a solar cell", IEEE Transactions on Electron Devices ED-29 (10), pp. 1511-1513, 1982. <u>http://dx.doi.org/10.1109/T-ED.1982.20906</u>

7.2 Vertical Optimization [PO12]

Del Pozo et al fitted the previous equation to the experimental data using the non-linear curve fitting routine lsqcurvefit implemented in MATLAB.

[PO12] Del Pozo, G., Romero, B., Arredondo, B., "Extraction of circuital parameters of organic solar cells using the exact solution based on Lambert W-function", Proceedings of SPIE - The International Society for Optical Engineering 8435, art. no. 84351Z, 2012. http://dx.doi.org/10.1117/12.922461

7.3 Integration of the Co-content Function [OR06]

$$I = \frac{nv_{th}}{R_S} W \left\{ \frac{I_0 R_S}{nv_{th} (1 + R_S G_P)} \exp \left[\frac{V + R_S (I_0 + I_{ph})}{nv_{th} (1 + R_S G_P)} \right] \right\} + \frac{V G_P - (I_0 + I_{ph})}{1 + R_S G_P}$$

where:

$$V = -nv_{th}W\left[\frac{I_0}{nv_{th}G_P}\exp\left(\frac{I+I_0+I_{ph}}{nv_{th}G_P}\right)\right] + I\left(R_S + \frac{1}{G_P}\right) + \frac{I_0+I_{ph}}{G_P}$$

After performing the integration and doing some algebraic manipulations, we obtain function CC in the form of a convenient purely algebraic expression:

$$CC(I,V) = C_{VI}V + C_{II}(I-I_{sc}) + C_{IIVI}V(I-I_{sc}) + C_{V2}V^{2} + C_{I2}(I-I_{sc})^{2}$$

[OR06] A. Ortiz-Conde, F. J. García Sánchez, and J. Muci, "New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I-V characteristics", Solar Energy Materials and Solar Cells, Vol. 90, pp. 352–361, Feb. 2006. <u>http://dx.doi.org/10.1016/j.solmat.2005.04.023</u>

7.3 Integration of the Co-content Function where the coefficients are: $C_{II} = R_S \left(I_0 + I_{ph} + I_{sc} \right) + nv_{th} (1 + G_P R_S) + I_{sc} R_S^2 G_P$

$$C_{V1} = -\left(I_{0} + I_{ph} + I_{sc}\right) - nv_{th}G_{p} - I_{sc}R_{s}G_{p}$$
$$C_{I2} = \frac{R_{s}\left(1 + G_{p}R_{s}\right)}{2} \qquad C_{V2} = \frac{G_{p}}{2}$$

Unfortunately, the fifth coefficient is dependent on the others:

$$C_{IIVI} = \frac{1 - \sqrt{1 + 16C_{I2}C_{V2}}}{2}$$

7.3 Integration of the Co-content Function

There are actually four independent coefficients and therefore only four unknowns may be extracted uniquely. The general solution of G_{D} , R_{S} , *n* and I_{PH} , in terms of C_{I1} , C_{V1} , C_{I2} , C_{V2} , is:

$$G_{P} = 2 C_{V2}$$

$$R_{S} = \frac{\sqrt{1 + 16 C_{V2} C_{I2}} - 1}{4 C_{V2}}$$

$$n = \frac{C_{VI} \left(\sqrt{1 + 16 C_{V2} C_{I2}} - 1 \right) + 4 C_{II} C_{V2}}{4 V_{th} C_{V2}}$$

Assur

ssuming:

$$I_0 << I_{ph}$$
 $I_{ph} = -\frac{\left(1 + \sqrt{1 + 16C_{V2}C_{I2}}\right)\left(C_{V1} + I_{sc}\right)}{2} - 2C_{I1}C_{V2}$

Finally, the value of I_0 is obtained by using implicit equation:

$$I_o = \frac{I - (V - I R_s) G_p + I_{ph}}{\exp\left(\frac{V - I R_s}{n V_{th}}\right) - 1}$$

7.3 Integration of the Co-content Function

Bivariate fitting of function *D* in the form of this algebraic expression:

$$CC(I,V) = C_{VI}V + C_{II}(I-I_{sc}) + C_{IIVI}V(I-I_{sc}) + C_{V2}V^{2} + C_{I2}(I-I_{sc})^{2}$$

to the experimental data produces the corresponding coefficients, from which the four diode model parameters can be calculated.

Experimental data from a plastic solar cell [JE04] was used to test the procedure.

[JE04] Jeranko, T., Tributsch, H., Sariciftci, N.S., Hummelen, J.C., "Patterns of efficiency and degradation of composite polymer solar cells", Solar Energy Materials and Solar Cells 83 (2-3), pp. 247-262, 2004. http://dx.doi.org/10.1016/j.solmat.2004.02.028

7.3 Integration of the Co-content Function – *Particular cases*

$$C_{12} = \frac{R_s}{2} \qquad C_{11} = R_s \left(I_0 + I_{ph} + I_{sc} \right) + n v_{th}$$
$$C_{V1} = -\left(I_0 + I_{ph} + I_{sc} \right) \qquad C_{V2} = 0$$

Solving R_s , *n* and I_{PH} with the assumption that :

$$R_{S} = 2C_{12}$$

$$I_0 \ll I_{ph}$$

$$I_{ph} = -\left(C_{V1} + I_{sc} \right)$$

$$n = \frac{C_{I1} - R_S \left(I_{ph} + I_{sc} \right)}{v_{th}}$$

7.3 Integration of the Co-content Function – *Particular cases*

$$C_{12} = 0 \qquad C_{V2} = \frac{G_P}{2} \qquad C_{11} = + nv_{th}$$
$$C_{V1} = -(I_0 + I_{ph} + I_{sc}) - nv_{th}G_P$$

Solving R_s , n and I_{PH} with the assumption that : $I_0 << I_{ph}$

$$G_P = 2 C_{V2}$$

$$n = \frac{C_{II}}{v_{th}}$$

56

$$I_{PH} = -C_{\mathbf{V}\mathbf{1}} - \mathbf{n}\mathbf{v}_{th}G_P + I_{sc}$$

7.4 Integration of the Content Function [PE13]

Following the previous ideas [OR06], but integrating the Content instead of the Co-content:

$$C(I,V) \equiv \int_{0}^{I} V \, dI$$

Then the algebraic expression is obtained

$$C(I,V) = \frac{1}{2A} \left[\left(-V - BI + C \right)^2 - \left(-V + C \right)^2 \right] - \frac{BI^2}{2} + ADI$$

where:

$$4 = \frac{1}{G_p} \qquad B = R_S + \frac{1}{G_p} \qquad C = n v_{th} + \frac{I_{PH} + I_0}{G_p} \qquad D = I_{PH} + I_0$$

This method requires measurements with a uniform increment of current in order to evaluate the integration.

[PE13] L. Peng, Y. Sun, Z. Meng, Y. Wang, Y. Xu, A new method for determining the characteristics of solar cells, Journal of Power Sources, 227, pp. 131-136, 2013. http://dx.doi.org/10.1016/j.jpowsour.2012.07.061

7.5 Métodos usando pocos puntos: V_{OC} , I_{SC} , V_{max} , I_{max} .

Un excelente artículo de revisión fue presentado en 2019 [BA19].

No	Ref.	Method	Year	Number of Parameters	Eval Steps	Datasheet Sufficient?	Input Data
1	[14]	Phang	1984	5	7		$I_{sc}, V_{oc}, I_{mp}, V_{mp}, R_{sho}, R_{so}$
2	[15]	Sera	2008	4	4	\checkmark	$I_{sc}, V_{oc}, I_{mp}, V_{mp}$
3	[16]	Saleem	2009	5	7		$I_{sc}, V_{oc}, V_{mp}, I_{60}, V_{60}$
4	[17]	Saloux	2011	3	3	\checkmark	$I_{sc}, V_{oc}, I_{mp}, V_{mp}$
5	[12]	Accarino	2013	5	6	\checkmark	$I_{sc}, V_{oc}, I_{mp}, V_{mp}, \alpha_{Isc}, \beta_{Voc}, V_{oc0}$
6	[18]	Khan	2013	5	7		$I_{sc}, V_{oc}, I_{mp}, V_{mp}, R_{sho}, R_{so}$
7	[19]	Cubas1	2014	5	8		$I_{sc}, V_{oc}, I_{mp}, V_{mp}, R_{sho}$
8	[19]	Cubas2	2014	5	8	\checkmark	$I_{sc}, V_{oc}, I_{mp}, V_{mp}$
9	[56]	Cubas3	2014	5	9	\checkmark	$I_{sc}, V_{oc}, I_{mp}, V_{mp}$
10	[20]	Bai	2014	5	11	\checkmark	$I_{sc}, V_{oc}, I_{mp}, V_{mp}$
11	[21]	Aldwane	2014	4	4	\checkmark	$I_{sc}, V_{oc}, I_{mp}, V_{mp}$
12	[22]	Cannizzaro	2014	4	8 or 11	\checkmark	$I_{sc}, V_{oc}, I_{mp}, V_{mp}$
13	[23]	Toledo	2014	5	13		$I_{sc}, V_{oc}, I_{mp}, V_{mp}, I_{xx}, R_{sho}$
14	[24]	Louzazni	2015	5	7		$I_{sc}, V_{oc}, I_{mp}, V_{mp}, R_{sho}, R_{so}$
15	[25]	Batzelis	2016	5	8	\checkmark	$I_{sc}, V_{oc}, I_{mp}, V_{mp}, \alpha_{Isc}, \beta_{Voc}, V_{oc0}$
16	[26]	Hejri	2016	5	5	\checkmark	$I_{sc}, V_{oc}, I_{mp}, V_{mp}$
17	[27]	Senturk	2017	5	7	\checkmark	$I_{sc}, V_{oc}, I_{mp}, V_{mp}$

Table 1. Main attributes of the 17 non-iterative parameter extraction methods.

[BA19] Batzelis, E., "Non-Iterative Methods for the Extraction of the Single-Diode Model Parameters of Photovoltaic Modules: A Review and Comparative Assessment," Energies, 12(3), pp. 358, 2019. DOI: 10.3390/en12030358

- •Los métodos basados en pocos puntos de las características *I*(*V*) ofrecen la ventaja de la rapidez y de poder ser aplicados directamente a las hojas de especificaciones técnicas de los fabricantes [1].
- •Los métodos basados en muchos puntos ofrecen mayor precisión y requieren mayor cálculo numérico [2].

[1] E. Batzelis, Non-iterative methods for the extraction of the single-diode model parameters of photovoltaic modules: A review and comparative assessment, Energies, 2019, 12(3),358. <u>https://doi.org/10.3390/en12030358</u>
[2] Ortiz-Conde, A. et al., 2014. A review of diode and solar cell equivalent circuit model lumped parameter extraction procedures. Facta Universitatis-Series: Electronics and Energetics, 27, 57-102. <u>https://doi.org/10.2298/FUEE14010570</u>

Electrical	Specifications

Module Type	OSA-144M-440	OSA-144M-445	OSA-144M-450
Testing Condition	STC NOCT	STC NOCT	STC NOCT
Rated output (Pmp/Wp)	440 330	445 334	450 338
Rated voltage (Vmp/V)	40.9 38.0	41.1 38.2	41.3 38.4
Rated current (imp/A)	10.76 8.66	10.83 8.73	10.90 8.79
Open circuit voltage (Voc/V)	49.8 45.6	50.0 45.8	50.2 46.0
Short circuit current (Isc/A)	11.29 9.31	11.33 9.38	11.41 9.44
Module efficiency (%)	20.24%	20,47%	20.70%
Power Tolerance (W)	th.		0~+5

Standard Test Condition (STC): Irradiance 1000W/m², Cell Temperature 25 C, AM1.5

Nominal Module Operating Temperature (NOCT): Irradiance 800W/m², Ambient Temperature 20 C, AM1.5, Wind Speed 1m/s

1) Open circuit $\rightarrow V_{OC} \equiv V|_{I=0} \rightarrow (V_{OC}, 0)$ 2) Short circuit $\rightarrow I_{SC} \equiv I|_{V=0} \rightarrow (0, I_{SC})$ 3) Rated voltage $\rightarrow V_{max}$ and Rated current $\rightarrow I_{max} \rightarrow (V_{max}, I_{max})$ 4) (V_{max}, I_{max}) es el punto de máxima potencia.

Las 4 condiciones anteriores permiten obtener hasta 4 parámetros.

A public set of more than one million *I-V* characteristics, from NREL (National Renewable Energy Laboratories), is available at [MA14]

It contains *I-V* curves measured over one-year period in the USA for 22 PV modules.

It includes six different PV technologies: single- (c-Si) and multi-crystalline (mc-Si), CdTe, CIGS, HIT and amorphous silicon (a-Si) (crystalline, tandem, and triplejunction).

Each *I-V* characteristics contains more than 180 points.

The total dataset is larger than 1 GB.

[MA14] Marion, B., et al., "New data set for validating PV module performance models," IEEE 40th Photovoltaic Specialist Conference (PVSC), 2014. DOI: 10.1109/pvsc.2014.6925171

For access to the data, please contact: Bill Marion at <u>bill.marion@nrel.gov</u>.

7.5.1 Método de Phang [Рн84], de 5 parámetros, usando: V_{OC} , I_{SC} , V_{max} , I_{max} y las derivadas en I_{SC} y V_{OC}

Definiendo:
$$G_{po} \equiv \frac{1}{R_{sho}} \equiv \frac{dI}{dV} \Big|_{I=I_{SC}}$$
 $R_{so} \equiv \frac{dV}{dI} \Big|_{V=V_{OC}}$
Aproximaciones: $R_{sh} \approx R_{sho}$ $R_s \approx R_{so} - \frac{n_{V_{th}}}{I_o} \exp\left(\frac{V_{OC}}{n_{V_{th}}}\right)$
 $n_{V_{th}} \approx \frac{V_{max} + R_{so}I_{max} - V_{OC}}{\left[\ln\left(I_{SC} - V_{max}G_p - I_{max}\right) - \ln\left(I_{SC} - V_{OC}G_p\right) + \frac{I_{max}}{I_{SC} - V_{OC}G_p}\right]}$
 $I_{ph} \approx I_{SC} \left(1 + G_p R_s\right) + I_o \left[\exp\left(\frac{I_{SC}R_s}{n_{V_{th}}}\right) - 1\right]$
 $I_o \approx \left(I_{SC} - V_{OC}G_p\right) \exp\left(-\frac{V_{OC}}{n_{V_{th}}}\right)$

[P84] Phang, J.C.H., Chan, D.S.H., Phillips, J.R., "Accurate analytical method for the extraction of solar cell model parameters," Electron. Lett. 20 (10), 406-408, 1984. http://dx.doi.org/10.1049/el:19840281

"Modelaje y extracción de parámetros...", Universidad El Bosque, Bogota, Colombia, 7abr2025, A. Ortiz-Conde

63

[SE08] Sera, D.; Teodorescu, R.; Rodriguez, P. Photovoltaic module diagnostics by series resistance monitoring and temperature and rated power estimation. In Proceedings of the 2008 34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 10–13 November 2008; pp. 2195–2199. http://dx.doi.org/10.1109/IECON.2008.4758297

8. Multiple-exponential solar cell models

Nonlinear Part

8.1 Alternative multi-exponential model for solar cells with resistances [OR12]

$$I = \left\{ \sum_{k=1}^{N} I_{0k} \left[\exp\left(\frac{V - R_s \left(I - G_{p2} V\right)}{n v_{th}}\right) - 1 \right] \right\}$$
$$-I_{ph} + G_{p2} V \left(1 + G_{p1} R_s\right) + G_{p1} \left(V - R_s I\right)$$

Applying Thevenin's theorem to the linear components:

 $R_{THE} = \frac{R_s}{1 + G_{p1}R_s} \qquad V_{THE} = \left(\frac{V}{R_s} + I_{ph}\right)R_{THE}$

By solving each branch separately and adding the solutions, the alternative model presents analytical solution for the current:

Linear Part

I_{Dioa}

$$D_{Dioa} = \sum_{k=1}^{N} \left\{ \frac{n_{ka} v_{th}}{a_k R_{THE}} W_0 \left[\frac{a_k R_{THE} I_{0ka}}{n_{ka} V_{th}} \exp\left(\frac{V_{THE} + a_k R_{THE} I_{0ka}}{n_{ka} v_{th}}\right) \right] - I_{0ka} \right\}$$

where W₀ is the principal branch of the Lambert function.

[OR12] A. Ortiz-Conde, D. Lugo-Muñoz and F. J. García Sánchez, "An explicit multi-exponential model as an alternative to traditional solar cell models with series and shunt resistances", IEEE Journal of Photovoltaics, Vol. 2, pp. 261-268, July 2012. http://dx.doi.org/10.1109/JPHOTOV.2012.2190265

8.1 Alternative multi-exponential model for solar cells with resistances

8.1 Alternative multi-exponential model for solar cells with resistances

Conclusiones:

- Hemos estudiado críticamente muchos métodos de extracción de parámetros de uniones p-n y celdas solares.
- Los métodos basados en la integración numérica son muy eficientes en la reducción del ruido de las mediciones.
- Los métodos basados en pocos puntos son muy convenientes de usar pero son sensibles al ruido.
- Los métodos fueron probados con simulaciones o con mediciones.

Gracias por su atención.

Agradezco al Prof. Morian Calderón-Díaz por su amable invitación.

Es un placer y un honor visitar la Universidad El Bosque, en Bogotá.

Si desea una copia de esta presentación, por favor, escríbame a: ortizc@ieee.org