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GaAs vs. GaN

« Power: GaN has higher maximum power density (>10x) mainly due to
drain voltage, resulting in higher power MMICs

« Efficiency: Efficiency is similar between the technologies

« Linearity: GaAs is typically a more linear technology. GaN linearity is still
a work in progress although some foundries are doing quite well

« Frequency: Relatively similar. Strong research thrust to push GaN to D-
band

 Thermal: GaN has can operate reliably at a higher channel temperature
(typically 225°C) vs < 160°C typical in GaAs. GaN is typically grown on a
SIC substrate, which has a higher thermal conductivity than GaAs

« Matching: GaAs is often easier to match (lower Rp x Cp product) due to
lower drain voltage. Typical GaN has a knee voltage which is quite high
precluding useful operation at a GaAs operating voltage (e.g. < 8V).

» Cost: GaN is more expensive than GaAs (~2X)
« Schedule: GaN typically takes longer than GaAs to process (~2X)
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3 GaN & GaAs MMIC PA Topologies
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Reactively Matched PA Topology
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Reactively Matched PA Design Procedure

Attack The Problem Backwards

+ Design the Output Matching Network first

- Typically the designer has an idea of the optimal load for
desired performance parameters (e.g. power, PAE, etc)

- Ensure the load to each device is uniform and the match is
low loss to maximize power combining efficiency

* Once the OMN is designed, design the Inter-Stage
Matching Network

- Apply same techniques used to design the OMN
- Ensure adequate drive margin
- Often the most difficult network to design

+ Keep working backwards to the Input Matching
Network

- Typically the easiest network to design OPTIMIZE

* Optimize all networks to maximize performance

& IEEE
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Reactively Matched MMIC PA Examples

[2] 400W S-Band [3] 100W X-Band [4] 50W Ku-Band [5] 40W Ka-Band
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Balanced MMIC PA Topology
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Balanced PA Design Procedure

Design 90°

Hybrid

Hybrid is almost always a Lange Coupler
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Balanced MMIC PA Examples

[7] 40W 4-18 GHz [8] 40W 27-31 GHz [7] 25W 32-38 GHz [9] 4W 74-80 GHz

= Lange Coupler
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Nonuniform Distributed MMIC PA Examples

[12] 10W 2-20 GHz [13] 20W 2-20 GHz [14] 7-16W 16-40 GHz

*All die are not to scale M" MTT-S
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[15] 2W 6-12 GHz _ . [17] 2W 75-100 GHz

[16] 25dBm 17 GHz
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Other Topologies

Balanced Amplifier (LMBA) Outphasing Harmonic Injection
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Not a complete list of topologies by any means!
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Preventing Pain: Avoiding The Pitfalls
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Understanding Bandwidth Limitations

* Input & output match targets are ~ R || C networks, specified in Q-mm and pF/mm
« Output Example: 50 Q-mm, 0.3 pF/mm (relatively constant vs. frequency)

Gate Matching Network Drain Matching Network

Ro IN((D) OUT R,

CIN COUT

How does output matchlng target impact the matchlng bandwidth?

©IEEE TYMTT-S
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Bode Fano Limitation

* Bode-Fano limit for matching to a R || C network
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Best Case Return Loss vs. Bandwidth

Bode Fano Limit
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Bode Fano Caveat

* Over a given bandwidth, | should be able to get the same
match for any amount of FET periphery, right?

“One must keep in mind, however, that the network will, in
general, involve an ideal transformer, since both the
terminations are assumed to be one ohm. The turns ratio
of the transformer can be determined easily from the zero
frequency behavior of the network.” [22]

< IEEE P MTT-S
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Example Reactive Matching Network

« Example, network design, 2-20 GHz, 1mm of periphery

1mm Device:

0.041 nH 0.583 nH 0.540 nH 16.594 pF

50 Ohm %%%%W%% Dﬂsoom

0.440 nH
0.3 pF ; 4.892 nH 0.385 pF 0.321 pF 0.1298 pF

In practice, ground here is replaced with large bypass capacitor to apply drain voltage

< IEEE e
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Example Matching vs Frequency
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Network Scaling by Device Periphery

* Network design with scaling and transformer, works for any amount of
periphery (presuming you can realize the values and transformer)

* As periphery increases, inductors divide, capacitors multiply, and a
transformer is required to match resistance

*.
0.041/alpha nH 0.440/alpha nH 0.540/alpha nH 16.5947alpha pF

0.583/alpha nH i \ E(‘
2 4=

— — —— —— -~ N=sqrt(alpha)
Cp pF 4.892/alpha nH 0.385*alpha pF 0.321*alpha pF 0.1298*alpha pF
T T T Rp_mm =50
Cp_mm=0.3

Rout = 50
P=1

T T T T Rp = Rp_mm/(P)
— Cp = Cp_mm*(P)

- alpha = Rout/Rp

<& IEEE TS MTT-S
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Practical Pitfall

» What happens if | don’t use (have) a
transformer?

* Network must be modified to do as
“‘well as you can’

» Bandwidth degrades as Rp deviates
from the output load

» But this doesn’t affect my narrowband
design... Not so fast!

< IEEE
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Narrowband Example Performance
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Summary

« Understand design limitations based on the chosen technology
 Transformers will enable you to come closer to the Bode-Fano limit
« Common broadband transformers include Ruthroff and Trifilar

« Narrowband transformers (e.g. quarter wave) often integrated into
the matching network

< IEEE TIMTT-S
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Loading Asymmetry

» Port-1 and Port-2 are driven in-phase
with equal power, Port-3 is terminated

e Current crowds around the bend,
causing a difference in the loading at
Port-1 vs. Port-2

 This would not show up with lumped
element models of the bends and
lines, EM Simulation is a must!

< IEEE
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Efficient Power Combining

« Remember this from your microwave engineering class?

b= Sa
s

RS §
_bN_
_Sll

S
_SNl

< IEEE

Two Port Network Example

a
: fi}_,, o— —O
_aN ] 171 - [S] L.
SIN
S\N 4 a, = incident power wave at port-i

b; = reflected power wave at port-i
S = Scattering Parameter Matrix

PN MITT-S
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Efficient Power Combining

A greatly simplified 4-way combiner is P1
shown on the right

* Ports 1-4 are the input ports and port 5 is the \
output port A

* To efficiently power combine, the input

Impedances at ports 1-4 to need be as P5
uniform as possible

« What are the input impedances of this B3
network at ports 1-47?

e Hint: It's a function of the terminations and
signals at all the ports

P2

P4

<©IEEE AAAMTTI-S
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» Assume all incident power waves are equal (which
implies driven port impedances are equivalent)

Efficient Power Combining

a1:a2:a3:a‘4:a'inc

« Assume no incident wave at the output port

SN

» The equations simplify substantially

< IEEE
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Efficient Power Combining

P1

» The effective reflection coefficients at ports 1-4 are
evaluated by dividing by the incident wave a;.

L1 Ll

1_‘1 bl/ainc Sll 8 S12 I S13 v S14 \\

L, bz/ Rine Sp1 TS T 5315y =

F3 bs/ Ainc S31 S5 T 533 + S5 P5

1—14 _b4/ainc_ _841 i S42 i S43 + S44_

N | P3
» The input impedances are then easily evaluated )
ZaS A
%o % Z, = Port Impedance
» This equation is vallid for complex port impedances P4

< IEEE TNMTT-S

MHz To THz Community



Efficient Power Combining

* Now we have a direct relationship between the
S-parameters of the network and the load input
Impedance at the driven ports

» This impedance can be evaluated quickly in
modern microwave circuit simulators

« A simple technique for evaluating power as a
function of load is the Cripps Technique [24]

P = Maximum Power

Ropt = Optimal Load (Resistive)
B o = Maximum Voltage

[ = Maximum Current

Z = Load Impedance

Yi = Load Admittance

e = Complex Conjugate

& IEEE

In this technique the device has an optimum
intrinsic load and maximum output power

* The device voltage or current limits when not
optimally loaded, degrading the power

» This power estimate can now be calculated for
each loaded FET and the balance can be
optimized

2 I:)max
R

max

Vmax B \/2 Pmax Ropt

opt

P

out

=2 min{Re(12,.2, ), Re(V,2,Y, )}

P AN MTT-S
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Example Schematic For Analysis

/ 0.35pF/mm FET Capacitance
€=080.35

PORT PORT PORT PORT PORT PORT PORT PORT PORT PORT PORT PORT PORT PORT PORT PORT
P=16 P=15 P=14 P=13 P=12 P=11 P=10 P=9 P=8 P=7 P=6 P=5 P=4 P=3 P=2 P=1
Z=50 Ohm Z=50 Ohm Z=50 Ohm Z=50 Ohm Z=50 Ohm Z=50 Ohm Z=50 Ohm Z=50 Ohm Z=50 Ohm Z=50 Ohm Z=50 Ohm Z=50 Ohm Z=50 Ohm Z=50 Ohm Z=50 Ohm Z=50 Ohm

(YT YYYYYYYYYYYY
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C=CpF| "CiCpF| CICpF| “CICpF| CiCpF| CICpF| CiCpF| CICpF| CiCpF| CICpF| CICpF| CiCpF| CICpF| CICpF| CICpF| CiCpF| 1B

+ 1 1 1 3 o3 %a

Terminated Output Port
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Intrinsic Loading

» Impedance for all ports shows
small variation

* Resistance and reactance
variation ~ +/- 2.5Q

« Variation is minimized by using
physical layout asymmetries to
Improve electrical symmetry

< IEEE
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Intrinsic Loading Impact on Cripps Power

« Analysis assumes maximum power
of 33.8dBm / FET (3W/mm) 345

Cripps Power Analysis

* Linear analysis of power balance
shows less than 0.3dB variation in
FET output power (in-band)

* In my experience, power balance is |
usually as good or better when 13 135 14F 14.5 . 15 155 16
analyzed with a non-linear model requency (GH2)

IEEE PN MITT-S
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Comparison with non-linear model analysis

» Analysis with non-linear model shows
similar power balance

» So why use the linear analysis?

* Non-linear analysis takes ~2 minutes to
converge (16 points)

» Linear analysis takes less than 1 second to
converge

» Note: Apply same techniques to other
amplifier stages, not just output stage

< IEEE

Imbalance
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Summary

« Minimize load variation to maximize power combining efficiency

 Load variation and impact on output power can be analyzed with
linear techniques

« Use physical asymmetry to enforce electrical symmetry

<©IEEE AAAMTTI-S
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Preventing Oscillations

« Amplifier designers need stability analysis techniques during the
design synthesis phase

« Rapid stability analysis techniques are highly desirable, which is
why use of K-factor and mu-factor is so prevalent

 However, K-factor and mu-factor fail to reveal instabilities in multi-
stage or parallel combined amplifiers

<©IEEE g MITT-S
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Preventing Oscillations

* Loop gain and Normalized determinant function (NDF) overcome the
limitations of K-factor and mu-factor

 NDF and Stability Envelope fail to provide an indication of stability margin

» Loop gain provides an indication of stability margin, but requires additional
odd mode loop analysis

» Both loop gain and NDF are slow analysis techniques which are not useful
for design synthesis.

< IEEE TNMTT-S
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Standard Linear FET Model

R L
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I .
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Loop Gain Stability Analysis Review

Linear FET model typically used for loop gain evaluation

Voltage gain from port-1 to port-2 is loop gain G,,, =V, / V;
» V, is injected at the device current source and resulting V, is measured at the intrinsic input to the
device (V)

Impedances at Gate and Drain impact Gy,
Shorting port 1 to port 2 causes the model to degenerate to the standard linear FET model

L, Ry Rya R4 Ly

Gate T —NM\A VWA~ Drain

h\ R~°°
ds 1

T Va=1xV, OV SR
Cds N,

NN MTT-S
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Loop Gain Stability Analysis Review

* Loop gain FET model is embedded in full PA

 RFIN and RFOUT terminations are swept, G
combination at each frequency

* Devices not under test have V,, and V. shorted together
» Source not shown on device models below (grounded inside the subckt)

Loop IS €Valuated for each

Baseband Termination Baseband Termination

angl =0 ang2=0

ID=C1 cAP
C=1000 pF ‘ xo .. . xn ‘ ‘ o .. .xn ‘ ID=C2
o ] =1000 pF
] e
SWPVAR SWPVAR
ND VarName="ang1” D=Swp2 !
Ilj,:lfz lues=swpstp(0,360,15) xg{yeirggv}piqg(zo.3eo,15)
SSSSSS EM Model of Passives
LTUNER ID=S1
ID=TUL (1) (Z) NET="Full Chip EM Base" -T2
Mag:\g_gamma Mag=lg_t g
9 9 Deg
VIN VOUT g g g |D,
B It e W e )
RFIN Term. Q1 Q2 Q3 RFOUT Term.
<$IEEE hAAVITT-S
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Loop Gain Stability Analysis Review

Example loop gain
circles and envelope

At a specific frequency, for a fixed RFIN
termination and varying RFOUT termination
phase, the loop gain traces a circle in the
complex plane

 Evaluating for a different fixed RFIN termination
results in a different circle

* The collection of circles shows the loop gain
behavior as a function of RFIN and RFOUT
termination

<©IEEE AAAMTTI-S
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Motivation for Envelope Technigque

- Designers don’t particularly care about the circles Example loop gain
themselves circles and envelope

« They care about the envelope of the circles, because that
defines the phase margin

* Phase Margin: Minimum Phase where |G,y,,| >= 1

* Phase margin provides an indication of stability margin
based on control theory, often 30° is acceptable

 Direct evaluation of the envelope would be highly desirable

<©IEEE AAAMTTI-S
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Loop Gain Envelope Derivation

» Consider the loop gain FET embedded in a (3) RFIN
MMIC amplifier, with simplified schematic ?
shown to the right

(1) Vin D_ [S] — (2) Vout

 The loop gain ports (V,,, V), RFIN and RFOUT
ports are interconnected by a 4-port network (4) RFOUT

» The 4-port S-parameters [S] are reduced to 2-
port S-parameters by applying the RFIN
termination (I'g) and the RFOUT termination
(') mathematlcally

< IEEE TYMTT-S
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Loop Gain Envelope Equations [23]

» The loop gain is a function of the reduced 2-port S-parameter
network

521

G oop — T~
Loop 9

« Lots of math allows the loop gain to be expressed as

cils + col'r, + c3lsT'r + ¢4
dil's +dol'y, +dsl'sl'y, + dy

< IEEE TNMTT-S
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Derivation

* The key takeaway is this mathematical form is identical to the NDF
form, therefore the solution to the NDF stability envelope can be
applied to loop gain to calculate the loop gain envelope

» Therefore, the loop gain envelope at a particular frequency is solved
mathematically by evaluating the phase of I', for each phase of I'g that
results in a point on the envelope of all possible loop gains

 Furthermore, this is all now automated in Microwave Office!

< IEEE TNMTT-S
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Multi-stage MMIC PA Example

RFIN Ql Q2 Q3 RFOUT
& IEEE EaMTT-S
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Multi-stage MMIC PA Example

» Loop gain circles shown in black, loop 38 GHz Loop Gain (Q1)
gain envelope shown in red

* Phase margin is minimum phase at
which |G| o] = 1

* Phase margin ~136°

< IEEE TNMTT-S
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Phase Margin Evaluation

- Phase Margin can be easily evaluated in
software from the loop gain envelope Phase Margin

180

170

* For a given frequency, find the minimum .
phase where |G ,,,| >= 1. That is the phase

[a)

margin. = 0

140

136.53

130

* An example for Q1 vs. frequency is shown to % v w P
the right =

« AWR also has a gain margin measurement

|EEE PN MITT-S
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Analysis Speed Comparison

* 0.1 — 50 GHz, 0.1 GHz steps, 100 phase points, single device

* Traditional Loop Gain: 207.39 seconds

« AWR Loop Gain Envelope: 0.7 seconds

» 1000 phase points only increased LGE analysis time to 1.28 seconds

. Analy(zing all three devices with 1000 phase points only increased loop gain
envelope analysis time to 3.11 seconds! The traditional method would have
taken well over 600 seconds for only 100 phase points!

<©IEEE AAAMTTI-S
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Summary

« Stability is critical, oscillation ruins your MMIC!

« Many techniques are available, Loop Gain Envelope is one useful
for both synthesis and analysis of designs

« No matter which technigue you use, make sure you understand the
assumptions and limitations

<©IEEE AAAMTTI-S
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Final Summary

« Compared GaAs vs. GaN, to assist technology selection
* Presented several common MMIC PA topologies
 Discussed bandwidth limitations, loading uniformity and stability analysis

* Go design a MMIC, it’s a lot of fun! Always be looking to learn!

<©IEEE g MITT-S
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