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Digital Communications

e Low error rates
e Higher and higher bit rates
e Spectral efficiency [bps/Hz]

e Power savings
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Channel Capacity

C = Blogy(1+SNR) +—= — =
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Approaching Channel Capacity

Channel codes
e Turbo codes

Encoder | 41
1

Encoder

e LDPC codes

eheck nodes
[y

e Polar codes

Performance a fraction of dB from the channel capacity
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Multipath propagation effects

Diffraction

= Frequency Selective Channels
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Frequency Selective Channels

Equalization techniques

e MLSE (Maximum Likelihood Sequence Estimation)

—]

B
—

e OFDM
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e SC-FDE
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Iterative Block Decision Feedback Equalizer

10
— IBDFE
. -:MFB
10 5.
............ (+):Iter. 1
ﬁ ) (*): Iter. 2
A 10 (A): Iter. 3
(0): Tter. 4
-3
10
10" | K | |
2 4 6 8 10 12 14 16

E/N(@B)

o lterative equalizer
o No error propagation effects
e Performance close to the MFB (Matched Filter Bound)
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MIMO Channel

MIMO RX[—>

Input data _ | MIMO TX :
processing

processing

e Received signal: y=Hx +n
e Channel knowledge at the transmitter

C = maxlog, (det (I+ SNRHRH") )
C = logy(1+ SNRIA?)
p

e No channel knowledge at the transmitter

C = log, <det <I + SNR g ))
NTx
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MIMO Channel

e Channel capacity grows with the
number of antennas

e Gain relatively the SISO case
upperbounded by min(Ny,, Ng,)

e Suitable for OFDM and SC-FDE
schemes

e Optimum receiver too complex

e Practical receivers based on MMSE
with excellent performance/complexity
trade-offs
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IB-DFE for MIMO
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Massive MIMO
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Massive MIMO

o Capacity gains increase with number of antennas
e Desire to have many antennas (say, 10 to 100)
e Massive MIMO




Massive MIMO

Conventional MIMO schemes suitable for systems up to about 8 x 8
Massive MIMO not a scaled version of MIMO!

Need for low complexity implementations

Common elements (RF chains, mixers, DAC/ADC, etc.)

Low complexity implementations (low resolution DACs and ADCs,
strongly nonlinear amplifiers, etc.)

e Channel estimation challenges (e.g., pilot contamination)
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Massive MIMO - Low Complexity Equalization

e ZF/MMSE schemes require large matrix inversions

e Gram matrix of the channel
p=0.1

e MRC/EGC schemes do not need matrix inversions
e Require Ng, >> Np,
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Massive MIMO - Low Complexity Equalization

¢ MRC/EGC combined with IB-DFE

o Excellent performance
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Massive MIMO - Low Resolution DACs
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Massive MIMO - Multi-Layer Architectures

HIGH BIT RATE
DATA STREAMI
SPATIAL HULTI- POLR POV‘I'I‘EO : l:::llnn
PLEXER IDECOMPOSITION
(N, SUB-STREAMS)  (BPSK/OQPSK)
" N, COMPONENTS

e Layer 1: Efficient power amplification (LINC schemes,
multi-amplifiers)
e Layer 2; Beamforming

e Layer 3: Spacial multiplexing (conventional MIMO)
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Massive MIMO - Hybrid Analog/Digital Architectures

Y we W (B B R R

e MIMO processing split in digital and analog parts
e Analog part
e Large matrices
e Constant-modulus operations
e Based on phased arrays
e Common for all band
e Digital part
e Small matrices
e No (or little) constraints on the operations
o Change with thes subcarrier
e Partially connected of fully connected approaches
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Massive MIMO - Hybrid Analog/Digital Architectures

Sub-connected | §
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""""" Digital
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e [terative receiver
e Low complexity

e Performance close to the fully digital approaches
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Increased Antenna Density

frequency =3GHz frequency =30GHz

50mm

85mm 85mm

Higher frequencies

Smaller wavelengths

Smaller antennas

Large number of antennas per area
Beyond massive MIMO
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Beyond Massive MIMO: Cell Free
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Cell-Free

Single-antenna AP

Q Q Backhaul

0
Y..YY. Y. YYYY. Y. Y. ..
ﬂ Fronthaul

¢ Ubiquitous service experience to the user’'s equipment (UE) regardless
of their location in the cell.

e Concept of cell boundary disappears - no cells

o APs geographically spread out over a cellular network.
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Cell-Free

ntra-layer coordination
(coordination within a CPU)

backhaul

nter-layer coordination = N

(coordination between CPUs)

e Sets of antennas grouped in access points (APs)
e AP behave as a distributed massive MIMO system
e User associated to several APs

e User separation at CPU and/or AP level
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Far Field Beamforming

Fraunhofer distance: dr = DTQ (D is the largest array dimension)
d>dg

Plane wave assumption

Infinite depth beamforming

Beamforming gain a function of the AcA

Maximum array gain
07f obtained in the AoA and "behind” the
focusing point

05

Normalized Beamforming Gain
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Optimum normalized beamforming gain
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Near field Beamforming

e Large antenna arrays and/or very high carrier frequencies.
o Communication likely occurs in the near-field propagation region
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Optimum normalized beamforming gain for d = dr/20 and d = dp/10.
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Near field vs Far Field Beamforming
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Normalized beamforming gain in the broadside direction for d = dr/30 (a)
and d = dg (b).
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Near-field Beamforming
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beamforming directions.
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Near Field Communication

Receiver power with anti-jamming LIS

e Accurate focusing
o Interference rejection

Tallinn University of Technology (TalTech), Tallinn, Estonia, May 23, 2025



Near Field Communication

0.1

Ri i

0.

Capacity without LIS without or with knowledge of jammer position

e Strong anti-jammer capabilities

o Increased capacity over a wide area
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Enabling Technologies
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RIS - Reflective Intelligent Surfaces

o Metasurfaces composed of sub-A-sized "meta-atom” elements with
controllable delay/phase, polarization

e Energy focusing and nulling

e Improved coverage and interference management
o Relatively low complexity

e Require channel knowledge

e Difficult to obtain with passive elements
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LIS - Large Intelligent Surfaces

Active elements

Short range

Near field communication

LoS communication

Antennas switched on and off according to user position/requirements
Resource allocation at the space domain
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LIS for Positioning

¢ Antennas with different RSS and/or AoA/AoD

e Accurate positioning
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LIS for Communication

O

o Communication aided by positioning information

Low complexity transmission and detection schemes

e Huge capacity and coverage gains

Robustness to interference and imperfections
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LIS for Energy Harvesting

e Beamforming to compensate losses in energy harvesting

e Better range and/or energy harvesting efficiency than traditional
techniques

e Ranges of 1m or more
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Panel-based LIS
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e Space-domain resource allocation

¢ Aided by position information

o LIS split in panels
e Many antennas per panel

e Small number of outputs per panel
e A user can be associated to several panels
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Panel-based LIS
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e |deal panel area A, and number of panel outputs

e Only a fraction of the LIS needs to be activated
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Panel-based LIS
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e Larger panels for non-uniform users
e More panel outputs N,. with more users or larger panels
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Radio Stripes
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o APs sequentially located inside the same cable, providing
synchronization, data transfer and power supply via a shared link.

e The need for dedicated fronthaul links between each AP and the
corresponding CPU is avoided

e Low cost and easy to deploy
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Radio Stripes
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e RSs not associated with the coverage tier of a network, but rather
dedicated to increase the capacity in specific small-to-moderate areas
where it is hard to deploy conventional base stations

e Suitable to areas with many APs and UEs per km?
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Radio Stripes

Radio Stripe (RS)
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e RS split in segments (as LIS with panels)
e Only a fraction of the segments is activated

o Users can be served by several RS segments
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Challenges
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Transceiver Design

o Need for very low complexity transceivers

e On/off approaches

e Beamforming

e Skip equalizers?

e Interference cancellation

e Low resolution DAC/ADC (1 bit quantizers?)

e Low complexity amplifiers (saturated or even switched amplifiers)
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Channel Estimation

e Too many channel to estimate

e Traditional channel estimation techniques not suitable
¢ Nonconventional approaches

e Parameterized channel models
Position-aided channel estimation
Machine learning techniques

e Deep learning
e Reinforced learning

Channel tracking
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Resource Allocation

Spacial resource allocation (plus conventional time/frequency
allocation)

Activation of LIS panels/RS segments and UE association to them
Complex optimization problem

e Non-convex
e Multi-objective (sum rate, minimum-rate, power)

Need for machine learning and/or meta-heuristic approaches
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Joint communications, positioning and sensing

Communications

Positioning Sensing

e Full cooperation between communications positioning and sensing
e Reduced complexity and signaling requirements

e Improved performance
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Conclusions

Path from SISO to massive MIMO
Beyond massive MIMO
e Enabling technologies (RIS, LIS, Radio Stripes)
o Cell free systems
e Near field communications
Challenges
e Low complexity hardware implementation
e Channel estimation
e Resource allocation

Need for joint communications, positioning and sensing
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Thank you!
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