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Digital Communications

• Low error rates
• Higher and higher bit rates
• Spectral efficiency [bps/Hz]

• Power savings
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Channel Capacity

C = B log2(1 + SNR) ⇐⇒ Eb
N0

= 2ε − 1
ε
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Approaching Channel Capacity

Channel codes
• Turbo codes

• LDPC codes

• Polar codes

Performance a fraction of dB from the channel capacity
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Multipath propagation effects

⇒ Frequency Selective Channels
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Frequency Selective Channels

Equalization techniques
• MLSE (Maximum Likelihood Sequence Estimation)

• OFDM

• SC-FDE
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Iterative Block Decision Feedback Equalizer

• Iterative equalizer
• No error propagation effects
• Performance close to the MFB (Matched Filter Bound)
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MIMO Channel

• Received signal: y = Hx + n
• Channel knowledge at the transmitter

C = max
R

log2

(
det

(
I + SNRHRHH

))
C =

∑
p

log2(1 + SNR|λp|2)

• No channel knowledge at the transmitter

C = log2
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MIMO Channel

• Channel capacity grows with the
number of antennas

• Gain relatively the SISO case
upperbounded by min(NTx, NRx)

• Suitable for OFDM and SC-FDE
schemes

• Optimum receiver too complex
• Practical receivers based on MMSE

with excellent performance/complexity
trade-offs
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IB-DFE for MIMO
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Massive MIMO
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Massive MIMO

• Capacity gains increase with number of antennas
• Desire to have many antennas (say, 10 to 100)
• Massive MIMO
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Massive MIMO

• Conventional MIMO schemes suitable for systems up to about 8× 8
• Massive MIMO not a scaled version of MIMO!
• Need for low complexity implementations
• Common elements (RF chains, mixers, DAC/ADC, etc.)
• Low complexity implementations (low resolution DACs and ADCs,

strongly nonlinear amplifiers, etc.)
• Channel estimation challenges (e.g., pilot contamination)
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Massive MIMO - Low Complexity Equalization

• ZF/MMSE schemes require large matrix inversions
• Gram matrix of the channel
ρ = 0.1 ρ = 0.9

• MRC/EGC schemes do not need matrix inversions
• Require NRx >> NTx
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Massive MIMO - Low Complexity Equalization

• MRC/EGC combined with IB-DFE
• Excellent performance
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Massive MIMO - Low Resolution DACs

• Nonlinear distortion with small
correlation for different DACs

• SIRMIMO ≈ T
RSIR

SISO

• Possible use of 1-bit DACs
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Massive MIMO - Multi-Layer Architectures

• Layer 1: Efficient power amplification (LINC schemes,
multi-amplifiers)

• Layer 2; Beamforming
• Layer 3: Spacial multiplexing (conventional MIMO)
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Massive MIMO - Hybrid Analog/Digital Architectures

• MIMO processing split in digital and analog parts
• Analog part

• Large matrices
• Constant-modulus operations
• Based on phased arrays
• Common for all band

• Digital part
• Small matrices
• No (or little) constraints on the operations
• Change with thes subcarrier

• Partially connected of fully connected approaches
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Massive MIMO - Hybrid Analog/Digital Architectures

• Iterative receiver
• Low complexity
• Performance close to the fully digital approaches
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Increased Antenna Density

• Higher frequencies
• Smaller wavelengths
• Smaller antennas
• Large number of antennas per area
• Beyond massive MIMO
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Beyond Massive MIMO: Cell Free
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Cell-Free

• Ubiquitous service experience to the user’s equipment (UE) regardless
of their location in the cell.

• Concept of cell boundary disappears - no cells
• APs geographically spread out over a cellular network.
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Cell-Free

CPU

CPU

CPU

backhaul

backhaul

fronthaul

fronthaul

Intra-layer coordination
(coordination within a CPU)

Inter-layer coordination
(coordination between CPUs)

• Sets of antennas grouped in access points (APs)
• AP behave as a distributed massive MIMO system
• User associated to several APs
• User separation at CPU and/or AP level
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Far Field Beamforming

• Fraunhofer distance: dR = D2

λ (D is the largest array dimension)
• d > dR
• Plane wave assumption
• Infinite depth beamforming
• Beamforming gain a function of the AoA
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Near field Beamforming

• Large antenna arrays and/or very high carrier frequencies.
• Communication likely occurs in the near-field propagation region
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Near field vs Far Field Beamforming
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Near-field Beamforming
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Near Field Communication

Receiver power with anti-jamming LIS

• Accurate focusing
• Interference rejection
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Near Field Communication

Capacity without LIS without or with knowledge of jammer position

• Strong anti-jammer capabilities
• Increased capacity over a wide area
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Enabling Technologies
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RIS - Reflective Intelligent Surfaces

• Metasurfaces composed of sub-λ-sized ”meta-atom” elements with
controllable delay/phase, polarization

• Energy focusing and nulling
• Improved coverage and interference management
• Relatively low complexity
• Require channel knowledge
• Difficult to obtain with passive elements
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LIS - Large Intelligent Surfaces

• Active elements
• Short range
• Near field communication
• LoS communication
• Antennas switched on and off according to user position/requirements
• Resource allocation at the space domain
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LIS for Positioning

• Antennas with different RSS and/or AoA/AoD
• Accurate positioning
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LIS for Communication

• Communication aided by positioning information
• Low complexity transmission and detection schemes
• Huge capacity and coverage gains
• Robustness to interference and imperfections
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LIS for Energy Harvesting

• Beamforming to compensate losses in energy harvesting
• Better range and/or energy harvesting efficiency than traditional

techniques
• Ranges of 1m or more
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Panel-based LIS

• Space-domain resource allocation
• Aided by position information
• LIS split in panels

• Many antennas per panel
• Small number of outputs per panel
• A user can be associated to several panels
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Panel-based LIS

• Ideal panel area Ap and number of panel outputs
• Only a fraction of the LIS needs to be activated

Tallinn University of Technology (TalTech), Tallinn, Estonia, May 23, 2025 37/48



Panel-based LIS

• Larger panels for non-uniform users
• More panel outputs Nac with more users or larger panels
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Radio Stripes

• APs sequentially located inside the same cable, providing
synchronization, data transfer and power supply via a shared link.

• The need for dedicated fronthaul links between each AP and the
corresponding CPU is avoided

• Low cost and easy to deploy
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Radio Stripes

• RSs not associated with the coverage tier of a network, but rather
dedicated to increase the capacity in specific small-to-moderate areas
where it is hard to deploy conventional base stations

• Suitable to areas with many APs and UEs per km2
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Radio Stripes

• RS split in segments (as LIS with panels)
• Only a fraction of the segments is activated
• Users can be served by several RS segments
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Challenges
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Transceiver Design

• Need for very low complexity transceivers
• On/off approaches
• Beamforming
• Skip equalizers?
• Interference cancellation
• Low resolution DAC/ADC (1 bit quantizers?)
• Low complexity amplifiers (saturated or even switched amplifiers)
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Channel Estimation

• Too many channel to estimate
• Traditional channel estimation techniques not suitable
• Nonconventional approaches

• Parameterized channel models
• Position-aided channel estimation
• Machine learning techniques

• Deep learning
• Reinforced learning

• Channel tracking
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Resource Allocation

• Spacial resource allocation (plus conventional time/frequency
allocation)

• Activation of LIS panels/RS segments and UE association to them
• Complex optimization problem

• Non-convex
• Multi-objective (sum rate, minimum-rate, power)

• Need for machine learning and/or meta-heuristic approaches
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Joint communications, positioning and sensing

• Full cooperation between communications positioning and sensing
• Reduced complexity and signaling requirements
• Improved performance
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Conclusions

• Path from SISO to massive MIMO
• Beyond massive MIMO

• Enabling technologies (RIS, LIS, Radio Stripes)
• Cell free systems
• Near field communications

• Challenges
• Low complexity hardware implementation
• Channel estimation
• Resource allocation

• Need for joint communications, positioning and sensing
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Thank you!
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