Ultra-low Power/Energy Efficient High Accuracy CMOS Temperature Sensors for passive RFID Applications

澳門大 受 UNIVERSIDADE DE MACAU UNIVERSITY OF MACAU

Prof. Man-Kay Law

Institute of Microelectronics State Key Laboratory of Analog and Mixed-Signal VLSI (University of Macau)

微電子研究院 漠擬與混合信號超大規模集成電路 國家重點實驗室(澳門大學)

Outline

Motivation and Challenge

- Fundamentals of BJT-based CMOS Temperature Sensing
- Design Examples
 - Ultra-low Power High Accuracy CMOS Temperature Sensor for Clinical Temperature Monitoring
 - Embedded Time-Domain Wide Sensing Range CMOS Temperature Sensor
- Conclusions

Emerging Sensing/Biomedical Applications

- Internet of Things/Wireless sensor networks
- Active/Semi-active/Passive RFID, Wearable/Implantable devices
- Temperature compensation for various sensors

- Operating frequency: 860~960MHz (Half duplex)
- Reader commands: Select (select), tag inventory (Query, Ack, QueryRep/Nak), and tag access (Sense, MTP read)
- Tag replies: RN16, EPC, and the sensor data.

- Tag available power in the order of μW
 - Power down/gating for non-critical circuits
 - Sensor power directly affects the tag sensitivity/reading range
 - e.g. Monza R6 tag with -22 dBm read sensitivity → 2µW sensing power can reduce reading distance by ~2x

- Passively-powered with limited on-chip supply filtering
 - High Power Efficiency vs. High Energy Efficiency
 - Burst mode operation can be tricky (e.g. a 50ns/8mA current spike → 0.4V drop w/ 1nF on chip capacitor)
 - Sensor w/ good supply immunity (speed vs. precision)

- EPC protocol compliant
 - Convert regular commands into custom sensing command for protocol compliance
 - Sensing time limited by the link timing at 20ms maximum
 - Immediate reply, delayed reply, in-process reply

- MTP writing consumes most power
 - Avoid MTP writing for sensing
 - Store sensor data with customized data storage with long retention time (tens to hundreds of ms)

- Sensor Calibration
 - One-point calibration is necessary for maintenance and deployment cost reduction
 - Wireless operation to relax the calibration cost/effort
 - Multiple sensor calibration possible

CMOS Temperature Sensors

- Analog frontend
 - BJTs, MOSFETs, on-chip resistors etc.
- Sensor readout
 - Analog-to-digital converter (e.g. I-ADC, SAR), Time-to-digital/Frequency-to-digital converters (TDC/FDC)

[K. Makinwa, Smart Temperature Sensor Performance Survey]

SSCS Switzerland Chapter Virtual DL

M. K. Law

Outline

- Motivation and Challenge
- Fundamentals of BJT-based CMOS Temperature Sensing
- Design Examples
 - Ultra-low Power High Accuracy CMOS Temperature Sensor for Clinical Temperature Monitoring
 - Embedded Time-Domain Wide Sensing Range CMOS Temperature Sensor
- Conclusions

BJT for Temperature Sensing

- Vertical/Lateral PNP/NPN BJT
- For a BJT, the collector current I_C is dependent on the base-emitter voltage V_{BE}

$$I_C = I_S \cdot \left(e^{\frac{V_{BE}}{kT/q}} - 1 \right) \approx I_S \cdot e^{\frac{V_{BE}}{kT/q}}$$

$$I_S = A_E \cdot C \cdot T^{\eta} \cdot e^{-\frac{V_{g_0}}{kT/q}}$$

• A_E = emitter area, C is a process dependent term, $\eta \approx 3\sim 4$, V_{g0} is the extrapolated bandgap voltage of silicon

V_{BE} and ΔV_{BE} Characteristics

• For *I_C* >> *I_S*

$$V_{BE} = \frac{kT}{q} ln \frac{I_C}{I_S}$$

Base (B) *V*_{BE} Emitter (E) *L Collector (C)*

p+ (E)

n-well (B)

p-substrate (C)

- V_{BE} is complementary-to-absolute-temperature (CTAT) and non-linear, as governed by I_S , and is therefore process dependent
- The I_S term can be eliminated by measuring the difference of two collector currents

$$\Delta V_{BE} = V_{BE2} - V_{BE1} = \frac{kT}{q} \ln \frac{I_{C2}}{I_{C1}}$$

V_{BE} and ΔV_{BE} Characteristics

• By controlling the collector current ratio (*p*) and emitterarea ratio (*r*)

$$\Delta V_{BE} = V_{BE2} - V_{BE1} = \frac{kT}{q} \ln(k \cdot r)$$

- With p = 5 and r = 1, $\Delta V_{BE} \sim 126 \,\mu\text{V/oC}$
- ΔV_{BE} is process tolerant with highly linearity and proportional-to-absolute-temperature (PTAT)

Basic Operation Principle

- Two BJTs biased at different current densities for generating
 - $-\Delta V_{BE}$: Proportional-to-absolute-temperature (PTAT)
 - V_{BE} : Complementary-to-absolute-temperature (CTAT)
- V_{REF} generated by linear combination of αV_{BE} and ΔV_{BE} (α is the prop. constant)
- Signal FS from -273 to $300^{\circ}C \rightarrow 16$ -bit for $0.01^{\circ}C$ resolution

Non-linearity in V_{BE}

• For practical reasons, I_c is generally made proportional to some power of T, with m typically = -1, 0, 1

$$I_C \propto T^m = I_C(T_r) \left(\frac{T}{T_r}\right)^m \qquad I_C = A_E C T^{\eta} e^{\frac{V_{BE} - V_{g0}}{kT/q}}$$

• Express V_{BE} as the sum of a constant term, a proportional to *T* term, and higherorder terms $V_{BE} = V_{BE0} - \lambda T + c(T)$

$$V_{BE0} = V_{g0} + (\eta - m)\frac{kT_r}{q} \qquad \lambda = \frac{V_{BE0} - V_{BE}(T_r)}{T_r} \qquad c(T) = (\eta - m)\frac{k}{q}\left(T - T_r - T \cdot \ln\frac{T}{T_r}\right)$$

Non-linearity in V_{BE}

I_s Process Spread

- Process mainly impacts I_S
 - Base doping
 - Geometry
- Process spread in I_S \rightarrow process spread in V_{BF}

$$\delta V_{BE} \propto -\frac{kT}{q} \cdot \frac{\delta I_S}{I_S}$$

V_{BE0}, **PTAT spread** $V_{BE}(T_r)$ Nominal V_{BE} 0 T_r Temperature

• V_{BE} spread is PTAT

 \rightarrow can be PTAT trimmed (e.g. by adjusting I_C)

Current gain in BJT

- I_{bias} is I_E instead of I_C
- With current gain β_F

$$V_{BE} = \frac{kT}{q} ln \left(\frac{I_{bias}}{I_S} \cdot \frac{\beta_F}{\beta_F + 1} \right)$$

$$\Delta V_{BE} = \frac{kT}{q} \ln\left(\frac{I_{C2}}{I_{C1}}\right) = \frac{kT}{q} \ln\left(\frac{\beta_{F1}}{\beta_{F2}} \cdot \frac{\beta_{F2} + 1}{\beta_{F1} + 1} \cdot \frac{I_{E2}}{I_{E1}}\right)$$

Current gain variation induces non-PTAT spread

$$\delta V_{BE} = \frac{kT}{q} \frac{\delta \alpha_F}{\alpha_F} = \frac{kT}{q} \frac{1}{1+\beta_F} \cdot \frac{\delta \beta_F}{\beta_F}$$

$$I_{C} = \alpha_{F}I_{E} = \frac{\beta_{F}I_{E}}{\beta_{F} + 1}$$
$$\beta_{F} = \beta_{F0} \left(\frac{T}{T_{r}}\right)^{XTB}$$

Biasing for BJT

• Assuming $I_C >> I_S$

$$I_{C} = I_{S} \left(e^{\frac{V_{BE}}{kT/q}} - 1 \right)$$
$$\Delta V_{BE} = \frac{kT}{q} ln \left(\frac{nI_{C1} + I_{S}}{I_{C1} + I_{S}} \right)$$

• Constant β_F biasing

System Error Sources

- Offset, gain error, mismatch and process spread
 - Dynamic element matching
 - Auto-zeroing/chopping
- Multiple sampling to reduce the wideband noise
- Extra errors introduced during signal conversions

Outline

- Motivation and Challenge
- Fundamentals of BJT-based CMOS Temperature Sensing
- Design Examples
 - Ultra-low Power High Accuracy CMOS Temperature Sensor for Clinical Temperature Monitoring
 - Embedded Time-Domain Wide Sensing Range CMOS Temperature Sensor
- Conclusions

Clinical Temperature Sensor

- Input range depends on temperature range
 - Input range under-utilization for applications requiring limited sensing range (e.g. human body temperature monitoring)

Clinical Temperature Sensor

- Input range depends on temperature range
 - Input range under-utilization for applications requiring limited sensing range (e.g. human body temperature monitoring)
- Increase temperature signal to relax ADC resolution

Clinical Temperature Sensor

- Input range depends on temperature range
 - Input range under-utilization for applications requiring limited sensing range (e.g. human body temperature monitoring)
- Increase temperature signal to relax ADC resolution
- Accurate gain stage (α ') and offset (V_{offset})

Operation Principles

- Dynamic element matching for accurate gain/offset generation using k₁₋₄
- Improve ADC input range utilization from < 4% to > 60%
- Relax ADC resolution to 12-bit for 0.01°C resolution

Block-based DWA

- For $\alpha = 18$, $k_1 = 6$, $k_2 = 9$, $k_3 = 5$, $k_4 = 10$
 - Requires 117 unit capacitors in conventional DWA
- Blocked-based DWA
 - Group maximum number of unit capacitors into blocks while providing the flexibility offered by DWA
 - Control wiring reduce by 4.8x

System architecture

- Dynamic Element Matching in BJT core and capacitor bank
- System level chopping to eliminate amplifier offsets
- β -compensation with R and R/5 to reduce V_{BE} non-linearity

$$I_{bias} = \frac{1 + \beta_F}{\beta_F} \frac{\Delta V_{BE,RL}}{R_b} \qquad \qquad V_{BE1,2} = \frac{kT}{q} ln \left(\frac{3I_{bias}}{I_S} \frac{\beta_F}{1 + \beta_F}\right) = \frac{kT}{q} ln \left(\frac{3\Delta V_{BE,RL}}{R_b I_S}\right)$$

SSCS Switzerland Chapter Virtual DL

M. K. Law

$k_1 \cdot \alpha \Delta V_{BE} \cdot k_2 \cdot V_{BE}$ integration (bs=0)

- At Φ₁ when bs=0, V_{BE} and ΔV_{BE} sampled by 9 and 108 capacitors (k₂=9, αk₁=108), together with integrator offset
- At Φ_2 when bs=0, $k_1 \cdot \alpha \Delta V_{BE} \cdot k_2 \cdot V_{BE}$ integrated into C_{int}
- Complete in 52 cycles

$k_4 \cdot V_{BE} - k_3 \cdot \alpha \Delta V_{BE}$ Integration (bs = 1)

- At Φ_1 when bs=1, V_{BE} and ΔV_{BE} sampled by 10 and 90 capacitors (k₄=10, αk_3 =90), together with integrator offset
- At Φ_2 when bs=1, $k_4 \cdot V_{BE} k_3 \cdot \alpha \Delta V_{BE}$ integrated into C_{int}
- Complete in 12 cycles

Experimental Results

0.3 0.2 Error (°C) .O -0. -0.2 -0.3 2530 35 40 45 Temperature (°C)

- Technology: 0.18-µm CMOS
- Power: 0.9 μW (Analog)
 0.2 μW (Digital)
- Resolution: 0.01 °C

- 20 samples from one batch
- Calibration and trimming at 37°C
- Inaccuracy $(\pm 3\sigma) < 0.2 \text{ °C}$
- Fulfill human body temperature standard

Performance Comparison

	This Work	TCAS-II'10	JSSC'10	ASSCC'07	JSSC'13	TCAS-II'17	JSSC'13
Process (µm)	0.18	0.35	0.18	0.18	180	0.18	0.18
Sensing Device	BJT	MOS	MOS	N/A	Inverters	Inverters	BJT
Sensing Range (°C)	25~45	35~45	-10~30	27~47	0~100	-20~80	-55~125
Inaccuracy (°C)	±0.2 *	±0.1	+1/-0.8	±1	-0.6/+3	±0.99*	±0.2*
Resolution (°C)	0.01	<0.035	<0.21°C	1	0.3	0.09	0.005
Power (µW)	1.1	0.11	0.12	0.9	0.2	0.8	5.1
Sampling rate (Sa/s)	2	10	333	N/A	10	1.25	10
Chip Samples	20	3	9	N/A	5	10	19
Calibration	1-point	2-point	2-point	2-point	2-point	2-point	1-point

* 3σ values from multiple chip results

Outline

- Motivation and Challenge
- Fundamentals of BJT-based CMOS Temperature Sensing
- Design Examples
 - Ultra-low Power High Accuracy CMOS Temperature Sensor for Clinical Temperature Monitoring
 - Embedded Time-Domain Wide Sensing Range CMOS Temperature Sensor
- Conclusions

Passive RFID Sense Tag

- Simplified interface between different building blocks
- Custom storage cell for temporary storage of temperature sensing data

SSCS Switzerland Chapter Virtual DL

M. K. Law

Sensor Frontend

- Feedback loops for PSRR improvement
- Multiple sampling to combat RF fluctuation and mismatch errors
- · Residual errors calibrated in the backend digitally
- Total 0.9 μ A with V_{CS} = 1.45V

SSCS Switzerland Chapter Virtual DL

Dual-Slope Time-Domain Readout

- Linear dependence between t_{dis} and f_s
- Ping-pong like operation
 - Avoid large voltage swings
 - Minimize current spikes
- 2x conversion speed SSCS Switzerland Chapter Virtual DL

$$t_{dis} = \frac{N}{f_{sen}} \frac{I_{pt_sen} - I_{ct_sen}}{I_{ref_sen}}$$

Process Compensated Clock Gen.

- Low power Schmitt trigger (ST): $f_{sen} \approx \frac{I_{ref_clk}}{C_I} \frac{1}{V_H V_L} = \frac{I_{ref_clk}}{C_I} \frac{1}{V_{clk} |V_{thp4}| V_{thn4}}$
- Pseudo-supply with: $V_{clk} = |V_{thp1}| + V_{thn1} + \sqrt{2I_b/K_{p1}} + \sqrt{2I_b/K_{n1}} + V_b$
- Variation in f_{sen} reduces by >4× over PVT

SSCS Switzerland Chapter Virtual DL

Custom Low-Leakage Storage

- Specific *Write* command as sensor trigger (timeout duration = 20 ms)
- All other blocks powered down to maintain a 1.4s retention time at 120°C (discontinuity between write and read commands)
- CRC to ensure the data integrity

Chip Micrograph

Tag Sensing Performance

SSCS Switzerland Chapter Virtual DL

M. K. Law

Tag Sensing Performance

• RF power dependent error (±0.2 °C @15 dBm, 30°C)

Tag Performance Comparison

	This Work	Magnus S3	EM4325	SensTag	Electra-CT	SL900A
Туре	Passive	Passive	Passive/BAP	Passive	Passive	Passive/BAP
Chip Area (mm ²)	1.44	~2.56 ^a	2.95	N/A	N/A	7.14 ^e
Sen. Range (°C)	-25 ~ 120	-40 ~ 85	-40 ~ 60	-20 ~ 105	-30 ~ 85	0 ~ 40
Sen. Acc. (°C)	±2.5 (3σ)	±5 / ±1	±2	±1	±0.5	±1 ^f
Calibration	1-pt	1-pt / 2-pt	1-pt	N/A	N/A	1-pt
Rel. Acc. (%)	3.45	8 / 1.6	4	1.5	0.9 ^d	5
Res. (°C)	0.17	0.25 ^b	0.25	N/A	> 0.1	0.18
Chip Sen. (dBm)	-10.8	-9.9	-4.5	N/A	N/A	-0.7 ^g
Tag Sen. (dBm)	-12.3	N/A	N/A	0.85 ^c	-2	N/A
Sensing Dist. (m)	3.5	N/A	N/A	1.53	2.12	N/A

^a Estimated from datasheet

^b After 139 data averaging

^c Estimated with the 5 feet reading distance,

35% rectifier efficiency and zero path loss

^d Use 103GT-2 NTC thermistor as sensing device

^e External sensor frontend

- ^f Standalone sensing accuracy
- ^g Estimated with 300µW sensing power and 35% rectifier efficiency

Outline

- Motivation and Challenge
- Fundamentals of BJT-based CMOS Temperature Sensing
- Design Examples
 - Ultra-low Power High Accuracy CMOS Temperature Sensor for Clinical Temperature Monitoring
 - Embedded Time-Domain Wide Sensing Range CMOS Temperature Sensor
- Conclusions

Conclusions

- System level considerations for embedded CMOS temperature sensor design for passive RFID tag
 - Power efficiency over energy efficiency
 - Tradeoff in accuracy/conversion time/power consumption
- BJT-based CMOS temperature sensor
 - > Intrinsic errors at ultra-low power consumption
 - ADC readout for high accuracy
 - TDC readout for system level co-optimization
- High accuracy CMOS temperature sensor consuming only ~1µW
- Embedded TDC-based CMOS temperature sensor in passive RFID tag, with a nominal free space sensing distance of 3.5m with a 4W EIRP reader

Acknowledgement

- Macau FDCT under Grant 069/2016/A2
- Research Committee of University of Macau under Grant MYRG2018-AMSV-00196

References

- [1] EPCglobal, "Radio-frequency identity protocols generation-2 UHF RFID air interface protocol for communications at 860 MHz-960 MHz Version 2.0.1 Ratified," 2015.
- [2] K.A.A. Makinwa, "Smart Temperature Sensors in Standard CMOS," Procedia Engineering, pp. 930 939, Sept. 2010.
- [3] K.A.A. Makinwa, "Smart Temperature Sensor Survey", [Online]. Available: http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls
- [4] R. J. Widlar, "New developments in IC voltage regulators," IEEE J. Solid-State Circuits, vol. 6, no. 1, pp. 2–7, Feb. 1971.
- [5] G. C. M. Meijer, G. Wang, F. Fruett, "Temperature Sensors and Voltage References Implemented in CMOS Technology," IEEE Sensors J., vol. 1, no. 3, pp. 225-234, Oct. 2001.
- [6] M. A. P. Pertijs, Johan H. Huijsing, Precision Temperature Sensors in CMOS Technology, The Netherlands: Springer, 2006.
- [7] M. A. P. Pertijs, A. Niderkorn, X. Ma, B. McKillop, A. Bakker, J. H. Huijsing, "A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.5°C from -50°C to 120°C," IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 454-461, Feb. 2005.
- [8] W. Sansen, Analog Design Essentials, Springer US, 2006.
- B. Wang, M. K. Law, J. Yi, C. Y. Tsui and A. Bermak, "A -12.3 dBm Passive Sense Tag for Grid Thermal Monitoring," IEEE Trans. on Industrial Electronics, vol. 66, no. 11, pp. 8811-8820, Nov. 2019.
- [10] T. Zhang, M. K. Law, P. I. Mak, M. I Vai and R. P. Martins, "Nano-Watt Class Energy-Efficient Capacitive Sensor Interface With On-Chip Temperature Drift Compensation," IEEE Sensors J., vol. 18, no. 7, pp. 2870-2882, Apr. 2018.
- [11] B. Wang, M. K. Law, C. Y. Tsui and A. Bermak, "A 10.6 pJ·K² Resolution FoM Temperature Sensor Using Astable Multivibrator," IEEE Trans. on Circuits Syst. II, Exp. Briefs, vol. 65, no. 7, pp. 869-873, Jul. 2018.
- [12] M. K. Law, S. Lu, T. Wu, A. Bermak, P. I. Mak and R. P. Martins, "A 1.1 µW CMOS Smart Temperature Sensor with an Inaccuracy of ±0.2oC (3σ) for Clinical Temperature Monitoring," IEEE Sensors J., vol. 16, no. 8, pp. 2272-2281, Feb. 2016.
- [13] B. Wang, M. K. Law, A. Bermak and H. C. Luong, "A Passive RFID Tag Embedded Temperature Sensor With Improved Process Spreads Immunity for a -30°C to 60°C Sensing Range", IEEE Trans. on Circuits and Systems I, vol. 61, no. 2, pp. 337 – 346, Feb. 2014.
- [14] J. Yin, J. Yi, M. K. Law, Y. Ling, M. C. Lee, K. P. Ng, B. Gao, H. C. Luong, A. Bermak, M. Chan, W. H. Ki, C. Y. Tsui and M. Yuen, "A system-on-chip EPC Gen-2 passive UHF RFID tag with embedded temperature sensor," IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2404-2420, Nov. 2010.
- [15] M. K. Law, A. Bermak, H. C. Luong, "A Sub-µW Embedded CMOS Temperature Sensor for RFID Food Monitoring," IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1246-1255, Jun. 2010.
- [16] M. K. Law, A. Bermak, "A 405-nW CMOS temperature sensor based on linear MOS operation," IEEE Trans. Circuits Systs. II, Exp. Briefs, vol. 56, no. 12, pp. 891-895, Dec. 2009.

Thank you for your attention.