

IEEE MNSU & ASME - 3D Printing & Modeling Glossary

Compiled by: IEEE MNSU & ASME Student Chapters | ECET Department

I. General 3D Printing Terminology

Additive Manufacturing (AM)	Process of creating 3D objects by adding material layer by layer.
3D Printing	Producing three-dimensional objects from digital models using additive manufacturing.
G-code	Machine instruction file that directs printer movements, speed, and temperature.
Slicing	Converting a 3D model into printable horizontal layers using slicer software.
Extruder	Feeds and melts filament, depositing material layer by layer.
Filament	Thermoplastic material (PLA, ABS, PETG) melted during printing.

II. 3D Modeling & Design Terms

CAD (Computer-Aided Design)	Software for designing 2D/3D models (Fusion 360, SolidWorks, TinkerCAD).
Parametric Modeling	Uses parameters and constraints to easily adjust dimensions.
STL File (.stl)	Standard 3D model format for printing, containing surface geometry.
OBJ File (.obj)	Includes geometry, texture, and color information.
Topology	Structure of mesh affecting surface smoothness and strength.

III. Printer Hardware & Software

FDM (Fused Deposition Modeling)	Common printing method using melted thermoplastic filament.
SLA (Stereolithography)	Uses UV light to cure resin for high-detail prints.
Build Volume	Maximum printable size (X, Y, Z dimensions).
Heated Bed	Keeps base layers warm to prevent warping.
Firmware	Software controlling printer hardware and movement (e.g., Marlin).

IV. Materials & Finishing

PLA (Polylactic Acid)	Eco-friendly and easy to print; ideal for prototypes.
ABS (Acrylonitrile Butadiene Styrene)	Durable and heat-resistant; may warp without a heated bed.
PETG	Tough and flexible; combines PLA's ease with ABS's strength.
TPU	Flexible and rubber-like; used for grips and wearable parts.
Post-Processing	Includes sanding, curing, or painting to improve finish.

V. Workflow Summary

1. Design	Create 3D model using CAD software.
2. Export	Save as .STL or .OBJ file.
3. Slice	Use slicer software to generate G-code.
4. Transfer	Send G-code to printer via SD card, USB, or Wi-Fi.
5. Print & Finish	Execute print, remove supports, and polish final model.

About IEEE & ASME Collaboration

The collaboration between IEEE and ASME at Minnesota State University, Mankato promotes interdisciplinary engagement in engineering design, manufacturing, and innovation. By combining electrical and mechanical engineering expertise, students gain hands-on experience in CAD modeling, 3D printing, and systems integration—bridging the gap between theory and practical application. This initiative supports professional development, creativity, and real-world problem solving in alignment with modern engineering industry standards.

© 2025 IEEE MNSU & ASME Student Chapters | For educational and training use only