

Mixed-signal technologies for ultrawide band signal processing systems

GABRIELE MANGANARC

Agenda

- Motivation / Applications
- Process Technology
- ADC architectures
- Integration
- Signal Chain Linearization
- Conclusion

Motivation / Applications

Application pull / Technology Push

4

Higher frequency in search for more **BANDWIDTH**

T. Rappaport et al., "Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond", IEEE Access, June 2019

J. M. Jornet, "Terahertz Communications: The Quest for Spectrum", IEEE ComSoc News, 22 Nov 2019

Some application drivers:

- ► 6G wireless / "Future Networks"
- Data centers / Comm Backhaul
- Immersive virtual reality / remote medicine
- Broadband sensing for cyber-physical systems
- Beamformers / wideband radars

Mobile phone's generations

Source: <u>https://www.researchgate.net/figure/Wireless-technology-evolution_fig1_322584266</u>

	<1GHz	3GH	z 4GHz	5GHz		24-30GHz	37-50GHz	64-71GHz	>95GHz
	600MHz (2x35MHz)	2.5/2.6GHz (B41/n41) 3.5	3.45- 3.55- 3.7- 55GHz 3.7GHz 4.2GH	z	5.9-7.1GHz	24.25-24.45GHz 24.75-25.25GHz 27.5-28.35GHz	37-37.6GHz 37.6-40GHz 47.2-48.2GHz	64-71GHz	>95GHz
(*)	600MHz (2x35MHz)		3.475-3.65 GHz			26.5-27.5GHz 27.5 <mark>-28.35</mark> GHz	37-37.6GHz 37.6-40GHz	64-71GHz	
٢	700MHz (2x30 MHz)		3.4-3.8GHz		5.9-6.4GHz	24.5-27.5GHz			
	700MHz (2x30 MHz)		3.4-3.8GHz			26GHz			
	700MHz (2x30 MHz)		3.4-3.8GHz			26GHz			
0	700MHz (2x30 MHz)		3.46-3.8GHz			26GHz			
0	700MHz (2x30 MHz)		3.6-3.8GHz			26.5-27.5GHz			
*	700MHz 2.5/2.6G	Hz (B41/n41)	3.3-3.6GHz	4.8-5GHz		24.75-27.5GHz	40-43.5G	Hz	
	700/800MHz 2.3	3-2.39GHz 3.4	3.4- 3.42- 3.7- 2GH <u>z 3.7GHz 4.0G</u> Hz		5.9-7.1GHz	25.7- 26.5- 26 26.5GH <u>z 28.9GHz</u> 29.4	8.9- 5GHz 37.5-38.7GHz		
			3.6-4.1GHz	4.5-4.9GHz		26.6-27GHz 27-29.50	GHz <u>39-43.5GH</u>	z	
۲	700MHz		3.3-3.6GHz			24.25-27.5GHz 27.5-29.5GHz	37-43.5GHz		
۲			3.4-3.7GHz			24.25-27.5GHz	39GHz		

Global snapshot of allocated/targeted 5G spectrum 5G is being designed for diverse spectrum types/bands

New 5G band Licensed Unlicensed/shared

Qualcomm – Global update on spectrum for 4G & 5G, April 2020

Wireless communication: 5G

Wireless communication: 5G

- Flexible functional integration

ANALOG

AHEAD OF WHAT'S POSSIBLE™

Densification/Range Extension

TEKTELIC

Cellular Base Stations (BTSs)

- Three complementary initiatives: \succ
 - Proactive cell shaping
 - Vector sectorization
 - **MIMO** Antennas
- An active antenna is one that has \succ active electronic components (i.e., transistors).
- Examples of active antennas: \succ
 - Smart antennas
 - Remote radio head antennas
 - Beamforming antennas.

Role of Active vs. Passive Antennas

ABI Research - Analyst angle: The rise and outlook of antennas in 5G, June 2018

Antenna arrays

$$G = \frac{4\pi A_{phys}\eta}{\lambda^2}$$

 A_{phys} : Physical aperture area η : Aperture efficiency λ : Wavelength

mmW Phased Array Antenna

Source: https://www.sciencedirect.com/topics /engineering/antenna-arrays

UHF Phased Array Radar

Source: https://www.bcpowersys.com/military-programs/uhf-phased-array-radar/

5G Antenna Arrays

Source: https://www.mitsubishielectric.com/en/about/rd/research/highlights/communications/5g.page

Source: https://www.engineersaustralia.org.au/sites /default/files/resource-files/2017-01/Div Syd_techPres_advanced_cellular_ base_station_antennas.pdf

Source: Sprint's massive-MIMO/Bevin Fletcher, FierceWireless https://www.fiercewireless.com/5g/sba-says-sprint-only-carrierit-sees-deploying-massive-mimo

12

What determines the spacing between the antenna elements?

Phased arrays / Beamforming

- Ultra-wideband base station antennas
- > High dense antenna arrays
- Phased array calibration
- Beamforming and beam management

Array2

https://www.engineersaustralia.org.au/sites

01/Div Syd techPres advanced cellular

/default/files/resource-files/2017-

base station antennas.pdf

A. Stark, "Buried EBG Structures for Antenna Array Applications," Proceedings of the 40th European Microwave Conference, 2010

Z. Wang et al, "A meta-surface antenna array decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system," Scientific Report, Feb. 2018

Roy Butler et al, "Broadband multiband phased array antennas for cellular communications," ISAP, 2016

Source:

Phased array system evolution

Generic beamforming phased array system signal chain

T/R signal chain (simplified)

The \$\$ stuff that does not want to scale: duplexer & other filters

An actual BTS's duplexer

An actual power amplifier

Process Technology

Moore's law

22

Higher digital power efficiency, but not (much) higher device speed!

Source: W.M.Holt, "Moore's Law: A path going forward", ISSCC 2016

Application pull: Wireless Infrastructure (BTS) bandwidth demand versus MS CMOS capability

EAD OF WHAT'S POSSIBLE

Die interconnects are the biggest bottleneck

AHEAD OF WHAT'S POSSIBLE™

Electromigration

 $J_{max}(T)$ compared to $J_{max}(T_{ref} = 25^{\circ}C)$ [1]

The maximum permissible current density of an aluminum metallization, calculated at e.g. 25°C, is reduced significantly when the temperature of the interconnect rises

Device Aging

Source: Fraunhofer Institute for Integrated Circuits

Complexity drives development cost

Source: International Business Strategies, Inc 2013 report

Hardware Design Cost

Design cost by chip component size in nm, \$m

ADC architectures

Technology progression: 12b/14b High Speed (HS) ADC progression

Evolution of high-speed A/Ds at ADI (see ISSCC papers)

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

14b/125MSPS	16b/250MSPS	14b/1.25GSPS	14b/3GSPS	12b/10GSPS	12b/18GSPS
0.35u BiCMOS	0.18u BiCMOS	65nm CMOS	28nm CMOS	28nm CMOS	16nm FinFET
85%A/15%D	80%A/20%D	75%A/25%D	70%A/30%D	60%A/40%D	40%A/60%D

Architectures (no one fits all): ADC "Aperture plot" (i.e. Bandwidth vs. Dyn Range or sample rate vs. resolution)

SNDR @ f_{in,hf} [dB]

f_{in,hf} [Hz]

ADI's ADC architectures: one cannot fit all

12b/10GSPS ADC: 8x interleaved Analog to Digital converter

ANALOG

AHEAD OF WHAT'S POSSIBLE"

12b/18GSPS ADC: 8x interleaved Analog to Digital converter

Input Frequency (GHz)

CT pipelined ADC Gen 1

VCOADC

- ► Variable gain V/I
- Reconfigurable
 - *f_s*=1.1-2.2Gsps
 - BW=10-20-50MHz
 - NSD=-147 to -154dBFS
 - Power=7-30mW/adc
- ► SFDR > 85dBc
- Calibration:
 - Background calibration of replica ADC signal path.
 - All calibration engine logic included with ADC IP, no uController required
 - Continuous calibration or on-demand
 - Calibration period=15-30uS
- Manual layout for high-speed signal path, P&R for calibration engine only

Why VCOADC?

- Area is 5-10x smaller than other ADCs with similar specs
- CT front end-> drive-able
- Mostly digital->Scalable

CT pipelined ADC Gen 2

	This work	JSSC 2017 [1]	
Architecture	VCO-based CT pipeline	CT pipeline	
Inherent anti-aliasing [dB]	41	68	
Process Technology	16nm FinFET	28nm CMOS	
f _s [GHz]	6.4	9.0	
Raw BW = $f_s / (2 \text{ OSR}) \text{ [MHz]}$	800	1125	
App BW = $f_S / (2 \text{ OSR}) \text{ [MHz]}$ (OSR ≥ 4 for all ADCs)	800 (OSR = 4.0)	1125 (OSR = 4.0)	
Power [mW]	280	2330 **	
Dynamic range [dB]	60	73	
Peak SNDR [dB]	58	66	
HD2 [dBFS]	-93	-79	
HD3 [dBFS]	-84	-86	
SFDR [dB]	73	73	
Area [mm ²]	0.34	5.1**	
FOM _s = SNDR + 10 log ₁₀ (BW / P) [dB]	153	153 **	

Integrated Systems: SoCs/SiPs with Mixed-Signal + Embedded DSP Capability

Interfaces: JESD204B/C, <u>High Speed Parallel and Ultra Short Reach</u>

quad Tx / quad-dual Rx fully integrated wideband MxFE

FUNCTIONAL DIAGRAM

AHEAD OF WHAT'S POSSIBLE™

42

Tx1/2

C34==

C34++

Flip Chip Chip Scale Package BGA

Flip Chip CSP BGA

Flip Chip – Thermally Enhanced BGA

3D Packaging

mmWave front-end modules

Die-On-Carrier (DOC) "Die-like" RF Product

Bumped Flip Chip (SMT Assembly)

Analog Devices Highly Confidential Information. ©2018 Analog Devices, Inc. All rights reserved.

47

Interposer Systems in a Package

TSMC's CoWoS® (Chip-on-Wafer-on-Substrate) Services, https://www.tsmc.com/english/dedicatedFoundry/services/cowos.htm

Evolution of VLSI into 3D: density!

>2020: 2.5D/3D fine-pitch assembly + stacking

Why do a SiP?

Traditional Receiver Architecture

Traditional Base Station Board

Real BTS's TRx board

16-bit 12.0 GSPS RF DAC with Integrated Buffer

- Direct-to-RF synthesis up to 5GHz with 2.5 GHz maximum signal bandwidth
- Integrated amplifier reduces the overall cost of the system simplifies the design, and extends the overall broadband performance
- High-Dynamic range, ultra wideband and flexible frequency planning
- Enables software configurable radio transmitter with configurable data path signal processing functions

Key Benefits

- Flexible frequency planning with multiple DAC rates and interpolation modes available for synthesizing the same RF frequency
- Common hardware platform for flexible and reliable RF design
- Absorbs analog RF functions into configurable digital domain and eliminates IF low pass filters and analog up-conversion imperfections
- Eliminates IF-to-RF up-conversion stage and LO generation lowering overall system power consumption
- Integrated amplifier extends operation to DC and provides bandwidth flatness out to 5GHz.

Frequency Response

► AD9166

AD9166 vs. AD9162 Plus Discrete Amplifier on Board

► AD9166 vs. Competitor

AD9166 vs. AD9162, Competitor

AHEAD OF WHAT'S POSSIBLE"

Algorithmic Capability: Systemlevel Linearization

Fs=6GSPS Lab Data: HD2 & HD3 correction

Fs=6GSPS Lab Data: SNR and SFDR

Wi-Fi 6 (802.11AX) Test Signal (500M)

- Test signal shown at right
- ► Before LinearX[™] correction in blue
- After LinearX[™] correction in red (tonal spurs are common to both)
- Training was done using a different wideband training signal spanning 400 – 600M

Conclusion

Summary

Challenges	Possible avenues to solutions
Heat management/Power efficiency	Power efficient Devices, Circuits and Systems
	New materials
	New architectures
Phase noise in sampling clocks	New materials (photonics?)
	Hybrid continuous-discrete sampling systems
Packaging/Interconnect strays	System partitioning
	Heterogeneous Integration
	3D integration
MOS scaling	Greater digital-analog co-design
	Parallel analog processing architectures
Higher frequency electronics	New devices/III-V
	Photonics/CMOS integration

Conclusion

A comprehensive approach is required to address the multiple important design constraints:

- Heat removal
- Devices' reliability and aging
- Process technology
- Packaging
- Data interfaces
- Performance/band/power consumption
- Area/costs

QUESTIONS!?

