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Motivation / Applications
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Application pull / Technology Push
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International Roadmap for Devices and Systems (IRDS) – 2018 Edition. 



Higher frequency in search for more BANDWIDTH

5 ©2020 Analog Devices, Inc. All rights reserved.

T. Rappaport et al., “Wireless Communications and Applications Above 100 GHz: 

Opportunities and Challenges for 6G and Beyond”, IEEE Access, June 2019 

J. M. Jornet, “Terahertz Communications: The Quest for Spectrum”, IEEE ComSoc News, 22 Nov 2019

Some application drivers:

► 6G wireless / “Future Networks”

► Data centers / Comm Backhaul

► Immersive virtual reality / remote medicine

► Broadband sensing for cyber-physical systems

► Beamformers / wideband radars



Mobile phone’s generations
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Source: https://www.researchgate.net/figure/Wireless-technology-

evolution_fig1_322584266

Qualcomm – Global update on spectrum for 4G & 5G, April 

2020

https://www.researchgate.net/figure/Wireless-technology-evolution_fig1_322584266


Wireless communication: 5G
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Wireless communication: 5G
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Densification/Range Extension
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Cellular Base Stations (BTSs)

10 ©2020 Analog Devices, Inc. All rights reserved. ABI Research - Analyst angle: The rise and outlook of antennas in 5G, June 2018

➢ Three complementary initiatives: 

▪ Proactive cell shaping

▪ Vector sectorization

▪ MIMO Antennas

➢ An active antenna is one that has 

active electronic components (i.e., 

transistors). 

➢ Examples of active antennas:

▪ Smart antennas

▪ Remote radio head antennas

▪ Beamforming antennas.



Antenna arrays
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𝐴𝑝ℎ𝑦𝑠: Physical aperture area

𝜂: Aperture efficiency

𝜆: Wavelength

𝐺 =
4𝜋𝐴𝑝ℎ𝑦𝑠𝜂

𝜆2

Source: https://www.bcpowersys.com/military-programs/uhf-phased-array-radar/

UHF Phased Array Radar

Source: 

https://www.sciencedirect.com/topics

/engineering/antenna-arrays

mmW Phased Array Antenna

https://www.bcpowersys.com/military-programs/uhf-phased-array-radar/
https://www.sciencedirect.com/topics/engineering/antenna-arrays


5G Antenna Arrays
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Source: https://www.mitsubishielectric.com/en/about/rd/research/highlights/communications/5g.page

Source:

https://www.engineersaustralia.org.au/sites

/default/files/resource-files/2017-

01/Div_Syd_techPres_advanced_cellular_

base_station_antennas.pdf

Source: Sprint's massive-MIMO/Bevin Fletcher, FierceWireless

https://www.fiercewireless.com/5g/sba-says-sprint-only-carrier-

it-sees-deploying-massive-mimo

https://www.mitsubishielectric.com/en/about/rd/research/highlights/communications/5g.page
https://www.engineersaustralia.org.au/sites/default/files/resource-files/2017-01/Div_Syd_techPres_advanced_cellular_base_station_antennas.pdf
https://www.fiercewireless.com/5g/sba-says-sprint-only-carrier-it-sees-deploying-massive-mimo


What determines the spacing between the antenna elements?
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Broadside Beam

Beam tilted to 30⁰

𝐴𝐹 = 1 + 𝑒𝑗𝜑 + 𝑒𝑗2𝜑 +⋯+ 𝑒𝑗𝑁𝜑, 𝜑 = 𝑘𝑑𝑠𝑖𝑛𝜃0

To avoid grating lobes:

𝑑 <
𝜆

1 + 𝑠𝑖𝑛𝑑 𝜃0
, 𝜃0 is the beam angle

Maximum beams occur at 𝜑 = ±𝑛𝜋 → 𝑠𝑖𝑛𝜃0 = ±𝑛𝜋/𝑘𝑑

These beams are in real space when −1 < 𝑠𝑖𝑛𝜃0< 1

∑

AF

0 φ 2φ (N-1)φ…

θ0

d



Phased arrays / Beamforming

14 ©2020 Analog Devices, Inc. All rights reserved.

➢ Ultra-wideband base station 

antennas

➢ High dense antenna arrays

➢ Phased array calibration

➢ Beamforming and beam 

management

Source:

https://www.engineersaustralia.org.au/sites

/default/files/resource-files/2017-

01/Div_Syd_techPres_advanced_cellular_

base_station_antennas.pdf

A. Stark, “Buried EBG Structures for  Antenna Array 

Applications,” Proceedings of the 40th European

Microwave Conference, 2010

Z. Wang et al, “A meta-surface antenna array decoupling (MAAD)

method for mutual coupling reduction in a MIMO antenna system,” 

Scientific Report, Feb. 2018

Roy Butler et al, “Broadband multiband phased array antennas for

cellular communications,” ISAP, 2016

Source: 

https://amphenol-antennas.com/news-

2/10020-2-4/

https://www.engineersaustralia.org.au/sites/default/files/resource-files/2017-01/Div_Syd_techPres_advanced_cellular_base_station_antennas.pdf
https://amphenol-antennas.com/news-2/10020-2-4/


Phased array system evolution
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Generic beamforming phased array system signal chain
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T/R signal chain (simplified)
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The $$ stuff that does not want to scale: duplexer & other filters
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Ceramic Monoblock

(mechanical)

SAW

(photo lithography)

Cavity (GHz)

(manual assembly)

𝑠𝑖𝑧𝑒 ∝ 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑠𝑖𝑧𝑒 ∝
1

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑐𝑜𝑠𝑡 ∝ 𝑠𝑖𝑧𝑒



An actual BTS’s duplexer
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Tuning 

screws!!!



An actual power amplifier
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Process Technology
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Moore’s law
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Higher digital power efficiency, but not (much) higher device speed!
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Source: W.M.Holt, “Moore’s Law: A path going forward”, ISSCC 2016



Application pull: Wireless Infrastructure (BTS) bandwidth demand versus MS 

CMOS capability

Block level impr. Architecture change 



Die interconnects are the biggest bottleneck
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Source: G. Yeap (Qualcomm), IEEE Electron Devices Meeting (IEDM), 2013

C. Hou (TSMC), ISSCC 2017 & L. Lu (TSMC), ISPD 2017 



Electromigration
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The maximum permissible current density of an 
aluminum metallization, calculated at e.g. 25°C, is 
reduced significantly when the temperature of the 
interconnect rises



Device Aging
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Vt shift due to NBTI degradation

Frequency shift after 4 years of op.

Source: Fraunhofer Institute for Integrated Circuits



Complexity drives development cost 
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Source: International Business Strategies, Inc 2013 report



ADC architectures
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Technology progression: 12b/14b High Speed (HS) ADC progression



Evolution of high-speed A/Ds at ADI (see ISSCC papers)

2006  2007  2008 2009  2010  2011  2012  2013  2014  2015  2016  2017  2018  2019  2020

14b/125MSPS

0.35u BiCMOS

85%A/15%D

16b/250MSPS

0.18u BiCMOS

80%A/20%D

14b/1.25GSPS

65nm CMOS

75%A/25%D

14b/3GSPS

28nm CMOS

70%A/30%D

12b/10GSPS

28nm CMOS

60%A/40%D

12b/18GSPS

16nm FinFET

40%A/60%D



Architectures (no one fits all): ADC “Aperture plot” (i.e. Bandwidth vs. Dyn

Range or sample rate vs. resolution)
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ADI’s ADC architectures: one cannot fit all
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12b/10GSPS ADC: 8x interleaved Analog to Digital converter
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Sub-ADC 

Cal. 

(x8)
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.
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12b/18GSPS ADC: 8x interleaved Analog to Digital converter
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CT pipelined ADC Gen 1

36
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VCOADC

► Variable gain V/I 

► Reconfigurable

▪ fs =1.1-2.2Gsps

▪ BW=10-20-50MHz

▪ NSD=-147 to -154dBFS

▪ Power=7-30mW/adc

► SFDR > 85dBc

► Calibration:

▪ Background calibration of replica ADC 
signal path.

▪ All calibration engine logic included 
with ADC IP, no uController required

▪ Continuous calibration or on-demand

▪ Calibration period=15-30uS

► Manual layout for high-speed signal 
path, P&R for calibration engine only
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Why VCOADC?
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► Area is 5-10x smaller than other ADCs with similar specs

► CT front end-> drive-able

► Mostly digital->Scalable 



CT pipelined ADC Gen 2
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Integrated Systems: SoCs/SiPs

with Mixed-Signal + Embedded 

DSP Capability
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Interfaces:  JESD204B/C, High Speed Parallel and Ultra Short Reach
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USR - Ultra Short Reach Interface (2pJ/b)

► Goal - Scalable, Power Efficient (2 to 4pJ/b) 

Interface for SIP and near-Package connect

▪ Spans OIFCEI 28G USR and VSR channels

► Lane Rates – 10-28Gbps

ADC
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Cha
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FPGA
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PHY
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PHY

10-16Gbps
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Clk

12
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n

HSP – High Speed Parallel Interface (8pJ/b)

► Goal – Enable Ain to Aout Latency < 100ns

► Clock Forwarded Architecture

▪ No CDR, Limited FIFOs, may not need PLL

► Benefits

▪ Signal Path Latency <100ns

▪ 30% FPGA Power Reduction vs. JESD

USR/ASIC target integration in 70mm x 70mm laminate

8T8R

TRCV die
28nm-16nm
RF    USR →

16T16R

ASIC die
16nm-7nm

USR    USR →

8T8R

TRCV die
28nm-16nm

USR    RF →

JESD204B/C

► Core1 – 16.2Gbps, 8 pJ/b

► Core 2 – 25Gbps, 9.4 pJ/bOptimised for 20cm on PCB

JESD204B+/C

C
P
R
I

DFE AD/DA
Analog



quad Tx / quad-dual Rx fully integrated wideband MxFE
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Flip Chip Chip Scale Package BGA

43

PCB

Laminate

Flip Chip CSP BGA



Flip Chip – Thermally Enhanced BGA
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Passive Components
Copper Plate



Higher frequency performance
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Si Mold Compound 

Laminate 

WLCSP FO CSP BGAs



3D Packaging
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“Pyramid”

Top Die Smaller Than Bottom

Top Die Same Size or Larger

Than Bottom

Wirebond Versions
Bumped Die Flip Chip Versions



mmWave front-end modules
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FlipChip on 

Laminate (LGA)

Die-On-Carrier (DOC)

“Die-like” RF Product

Bumped Flip Chip

(SMT Assembly)



Interposer Systems in a Package
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TSMC’s CoWoS® (Chip-on-Wafer-on-Substrate) Services, https://www.tsmc.com/english/dedicatedFoundry/services/cowos.htm

P. Gupta and S. S. Iyer, “Goodbye, Motherboard. Hello, Silicon-Interconnect Fabric”, IEEE Spectrum, Sept 2019

https://www.tsmc.com/english/dedicatedFoundry/services/cowos.htm


Evolution of VLSI into 3D: density!

49 ©2020 Analog Devices, Inc. All rights reserved.

International Roadmap for Devices and Systems (IRDS) – 2018 Edition. 

Main advantages:

► Density

► Power efficiency

► Mitigation of local interconnect issues

Main challenges:

► Cost

► Heat management



Why do a SiP?
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Traditional Receiver Architecture

RX SIP

Traditional Base Station Board

ADC

ADC

RX SIP(11x11mm) 

+ External Bypass

90% reduction in Board Area



Real BTS’s TRx board



16-bit 12.0 GSPS RF DAC with Integrated Buffer

52

► Flexible frequency planning with multiple DAC rates and interpolation 
modes available for synthesizing the same RF frequency

► Common hardware platform for flexible and reliable RF design

► Absorbs analog RF functions into configurable digital domain and 
eliminates IF low pass filters and analog up-conversion imperfections

► Eliminates IF-to-RF up-conversion stage and LO generation lowering 
overall system power consumption

► Integrated amplifier extends operation to DC and provides bandwidth 
flatness out to 5GHz. 

Key Benefits

► Direct-to-RF synthesis up to 5GHz with 2.5 GHz maximum 
signal bandwidth

► Integrated amplifier reduces the overall cost of the system 
simplifies the design,  and extends the overall broadband 
performance

► High-Dynamic range, ultra wideband and flexible frequency 
planning

► Enables software configurable radio transmitter with 
configurable data path signal processing functions

Diff-to-SE
50-ohm

Buffer
System-in-Package
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► AD9166 vs. Competitor► AD9166
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Algorithmic Capability: System-

level Linearization
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Non-linear Correction for Rx Signal Chain
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Non-linear Correction for Rx Signal Chain
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Non-linear Correction for Rx Signal Chain
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Non-linear Correction for Rx Signal Chain
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Non-linear Correction for Rx Signal Chain
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Non-linear Correction for Rx Signal Chain
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𝐷𝑙𝑖𝑛 𝑉𝑖𝑛 = H 𝐷𝑜𝑢𝑡 𝑉𝑖𝑛 ≅ 𝐺 ∙ 𝑉𝑖𝑛 + 𝑑0



Fs=6GSPS Lab Data: HD2 & HD3 correction
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Fs=6GSPS Lab Data: SNR and SFDR 
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Wi-Fi 6 (802.11AX) Test Signal (500M)
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► Test signal shown at right

► Before LinearX™ 

correction in blue

► After LinearX™ correction 

in red (tonal spurs are 

common to both)

► Training was done using a 

different wideband training 

signal spanning 400 –

600M



Conclusion
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Summary
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Challenges Possible avenues to solutions

Heat management/Power efficiency Power efficient Devices, Circuits and Systems

New materials

New architectures

Phase noise in sampling clocks New materials (photonics?)

Hybrid continuous-discrete sampling systems

Packaging/Interconnect strays System partitioning

Heterogeneous Integration

3D integration

MOS scaling Greater digital-analog co-design

Parallel analog processing architectures

Higher frequency electronics New devices/III-V 

Photonics/CMOS integration



Conclusion
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A comprehensive approach is required to address the multiple important design constraints:

▪ Heat removal

▪ Devices’ reliability and aging

▪ Process technology

▪ Packaging

▪ Data interfaces

▪ Performance/band/power consumption

▪ Area/costs



QUESTIONS!?
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