

A 8.7ppm/°C, 694nW, One-Point Calibrated RC Oscillator Using a Nonlinearity-aware Dual Phase-Locked Loop and DSM-controlled Frequency-Locked Loops

> Giorgio Cristiano^{*}, <u>Jiawei Liao</u>^{*}, Alessandro Novello, Gabriele Atzeni and Taekwang Jang ETH Zürich ^{*}contributed equally to this work

Outline

- 1. Background and Motivation
- 2. Proposed Timer
 - 1. One-point calibration with a nonlinearity-aware dual PLL structure
 - 2. DSM-Controlled FLL
 - 3. Digital Loop Filter with non-linearity cancellation
 - 4. Example of Operation
- 3. Measurement Results
- 4. Conclusions

IoT Devices

IoT sensor node applications

P. Mayer et al. SUSCOM 2020

T. Jang et al. TCAS1 2017

S. Oh et al. JSSC 2015

Challenges in Timer Circuits

Challenges in Timer Circuits

Challenges in Timer Circuits

IoT node timers must have:

- Ultra-low power consumption
- High frequency accuracy
 - Insensitivity to process, voltage, temperature (PVT) variations
 - Long-term frequency stability (Low Allan deviation)

T. Jang et al. ISSCC 2016

Issues

- Necessary resistor trimming
- 2-point calibration to cancel out R variation

$$R = R_P (1 + \alpha_P \Delta T) + R_C (1 + \alpha_C \Delta T) =$$

= (R_P + R_C) + (R_P \alpha_P + R_C \alpha_C) \Delta T

Must measure at least at 2 temperatures to cancel this contribution

T. Jang et al. ISSCC 2016

T. Jang et al. ISSCC 2016

- Necessary resistor trimming
- 2-point calibration to cancel out R variation
- Additional parasitics due to trimming
- Accuracy limited by higher-order variations

- Possible improvements
 - Avoid resistor trimming
 - Use 1-point calibration
 - Cancel out higher-order variations

Outline

- 1. Background and Motivation
- 2. Proposed Timer
 - 1. One point calibration with a nonlinearity-aware dual PLL structure
 - 2. DSM-Controlled FLL
 - 3. Digital Loop Filter with non-linearity cancellation
 - 4. Example of Operation
- 3. Measurement Results
- 4. Conclusions

Proposed FLL Architecture

- Trimming and temperature insensitivity through R
- Current reuse scheme

Proposed FLL Architecture

- Trimming and temperature
 insensitivity through R
- Current reuse scheme

- Trimming and temperature insensitivity through Frequency Control Word (FCW)
- Differential branches scheme

$$R = \frac{R_0}{R} (1 + \alpha \Delta T + \beta \Delta T^2) \qquad F_{OSC} = \frac{1}{FCW * RC}$$

1

 $R = \frac{R_0}{(1 + \alpha \Delta T + \beta \Delta T^2)}$

J. Lee et al. JSSC 2012 A. Jain et al. ISCAS 2019

$$R = \frac{R_0}{R} (1 + \alpha \Delta T + \frac{\beta}{\beta} \Delta T^2) \qquad F_{OSC} = \frac{1}{FCW * RC}$$

1

$$R = \frac{R_0}{R} (1 + \alpha \Delta T + \beta \Delta T^2) \qquad F_{OSC} = \frac{1}{FCW * RC}$$

Temperature insensitivity can be achieved with a 1-point measurement only

Proposed Timer Architecture $R_A = R_{0,A}(1 + \alpha_A \Delta T)$

 $R_B = R_{0,B}(1 + \alpha_B \Delta T)$

Outline

1. Background and Motivation

2. Proposed Timer

- 1. One point calibration with a nonlinearity-aware dual PLL structure
- 2. DSM-Controlled FLL
- 3. Digital Loop Filter with non-linearity cancellation
- 4. Example of Operation
- 3. Measurement Results
- 4. Conclusions

- Capacitors to reduce the ripple on $V_{\rm R}$ and $V_{\rm C}$

 Cascode stages for accurate mirroring

- Self- biased through a 1/N replica
- Stable across temperature, voltage and process variations

de

$$I_{R} = \frac{V_{REF}}{FCW * R_{SW}}$$

$$I_{R1} = I_{R} + \epsilon_{I}$$

$$I_{C} = (V_{REF} + \epsilon_{V}) * C_{SW} * f$$

$$\epsilon_{I} \text{ and } \epsilon_{V} \text{ are temperature}$$
pendent and have to be removed

• Chopping minimizes the impact of the amplifier and mirror offset

ETH zürich

Outline

1. Background and Motivation

2. Proposed Timer

- 1. One point calibration with a nonlinearity-aware dual PLL structure
- 2. DSM-Controlled FLL
- 3. Digital Loop Filter with non-linearity cancellation
- 4. Example of Operation
- 3. Measurement Results
- 4. Conclusions

• Input: 1 bit BBPFD

• Output: FCW to FLLs in 5 bits (DSM driven)

• 29 bits proportional path with programmable gain K_P

- 29 bits proportional path with programmable gain K_P
- 29 bits integral path with gain K_I

- Additional input TRIM for frequency trimming
- Fractional part (24 LSBs) goes to DSM, which is added to integer part (5 MSBs)

• How are the integral gains generated?

- The FCW function is divided in multiple intervals
- Each interval contains multiple steps

- UP is accumulated on 16 bits, 4MSBs are fed to next stage
- This generates 2⁴ intervals of 2¹² steps each.

- UP is accumulated on 16 bits, but only the 4MSBs are considered.
- This generates 2⁴ intervals of 2¹² steps each.

- The slope SS is stored in a LUT
- The 4MSBs of S_{ACC} are used as LUT addresses
- The integral path accumulates the LUT entry value

- Thanks to the very low variation of TC, the LUTs are valid for different chips coming from different batches, without the need of changing them
- This approach can also cancel out higherorder repeatable dependencies

Outline

- 1. Background and Motivation
- 2. Proposed Timer
 - 1. One point calibration with a nonlinearity-aware dual PLL structure
 - 2. DSM-Controlled FLL
 - 3. Digital Loop Filter with non-linearity cancellation
 - 4. Example of Operation
- 3. Measurement Results
- 4. Conclusions

- LUTs have been populated as previously described
- The circuit has been trimmed, and the PLLs are locked at 17°C

- At time t₀ the temperature changes to 25°C
- Due to the temperature change, the FLL frequencies change, and F_{oscB} > F_{oscA}

- F_{oscB} > F_{oscA} , so UP=1 accumulates on S_{ACC} .
- The FCWs increase with the step defined by $SS_A[7]$ and $SS_B[7]$

- At time $t_1 S_{ACC}$ updates the integral gain to the LUT [8] entry
- The FCWs keep changing, but with a different step size

- At time $t_2 F_{oscA} = F_{oscB}$. UP oscillates, and S_{ACC} does not change. The circuit is locked
- The locked frequency is the same as the one at 17°C thanks to the LUT entries

- At time t₃ the temperature changes to 17°C
- Due to the temperature change, the FLL frequencies change, and $F_{oscA} > F_{oscB}$

- F_{oscB} > F_{oscA} , so UP=0 decreases S_{ACC} .
- The FCWs decrease with the step defined by the $SS_A[8]$ and $SS_B[8]$

- At time $t_4 S_{ACC}$ decreases back in the interval [7]
- The two frequencies lock again at the same target frequencies

- The timer requires two resistors with different TC but not necessarily one PTAT one CTAT
- In this example we use two different PTAT

Measured Transient

Smaller integral gain

Measured Transient

Smaller integral gain

Larger integral gain

Measured Transient

Smaller integral gain •

•

Outline

- 1. Background and Motivation
- 2. Proposed Timer
 - 1. One-point calibration with a nonlinearity-aware dual PLL structure
 - 2. DSM-Controlled FLL
 - 3. Digital Loop Filter with non-linearity cancellation
 - 4. Example of Operation
- 3. Measurement Results
- 4. Conclusions

Die Photo

- We have measured 10 different chips coming from 2 different batches
- Each chip was calibrated at a single temperature, and we have used the same LUTs for all measurements
- Target frequency: 116kHz

1.215 mm² in 180nm CMOS Technology

Measurement Results

Performance Summary and Comparison

	This Work	Meng VLSI2019 [4]	Gürleyük ISSCC2018 [1]	Zhang VLSI2017 [5]	Savanth ISSCC2017 [6]	Jang ISSCC2016 [2]	Choi JSSC2016 [7]	Jeong JSSC2015 [3]
Process (nm)	180	180	180	180	65	180	180	180
Frequency (Hz)	116k	600k	8M	24M	1.35M	3k	70.4k	11
TC (ppm/°C)	8.7	48.69	3.85	3.2/14.2 ¹	96	13.8	34.3	45
Temp. Range (°C)	-15 to 85	-45 to 125	-45 to 85	-40 to 150	0 to 150	-25 to 85	-40 to 80	-10 to 90
Line sensitivity (%/V)	0.38	0.046	0.18	0.03	0.49	0.48	0.75	1
Power (nW)	694	2200	750000	200000	920	4.7	110	5.8
Allan deviation(ppm)	4	_2	0.25	_2	_2	32	7	50
Energy/cycle (pJ)	5.98	3.67	93.75	8.33	0.68	1.57	1.56	527.3
Area (mm ²)	1.2	0.049	1.59	0.17	0.005	0.5	0.26	0.24
Calibration points	1	_2	2	3	_2	2	2	_2
Number of samples	10	3	12	200/12 ¹	2	1	5	5

¹tested at wafer level / including package stress ²not reported

ETH zürich
Performance Summary and Comparison

	This Work	Meng VLSI2019 [4]	Gürleyük ISSCC2018 [1]	Zhang VLSI2017 [5]	Savanth ISSCC2017 [6]	Jang ISSCC2016 [2]	Choi JSSC2016 [7]	Jeong JSSC2015 [3]
Process (nm)	180	180	180	180	65	180	180	180
Frequency (Hz)	116k	600k	8M	24M	1.35M	3k	70.4k	11
TC (ppm/°C)	8.7	48.69	3.85	3.2/14.2 ¹	96	13.8	34.3	45
Temp. Range (°C)	-15 to 85	-45 to 125	-45 to 85	-40 to 150	0 to 150	-25 to 85	-40 to 80	-10 to 90
Line sensitivity (%/V)	0.38	0.046	0.18	0.03	0.49	0.48	0.75	1
Power (nW)	694	2200	750000	200000	920	4.7	110	5.8
Allan deviation(ppm)	4	_2	0.25	_2	_2	32	7	50
Energy/cycle (pJ)	5.98	3.67	93.75	8.33	0.68	1.57	1.56	527.3
Area (mm ²)	1.2	0.049	1.59	0.17	0.005	0.5	0.26	0.24
Calibration points	1	_2	2	3	_2	2	2	_2
Number of samples	10	3	12	200/12 ¹	2	1	5	5

¹tested at wafer level / including package stress ²not reported

ETH zürich

Conclusions

- A low-power on-chip timer, with single point calibration is implemented in 180nm CMOS
- 2. A Dual-PLL structure, with a non-linearity aware DLF, that controls two chopped FLLs, leads to a very low temperature sensitivity, and Allan deviation floor
- The measured temperature coefficients of the 10 chips is 1.62~8.7ppm/°C, while consuming 694nW at 116kHz

Thanks for your attention

ETH zürich

Jiawei Liao Ph.D student liaoj@iis.ee.ethz.ch

ETH Zürich Integrated System Laboratory Energy Efficient Circuits and IoT Systems Group ETZ J88 Gloriastrasse 35 8092 Zürich Switzerland