Integrated Power Management Circuits for Energy-Efficient IoT Systems

Makoto Takamiya

University of Tokyo

Outline

- Energy-efficiency in IoT systems
- ♦ 0.45-V input buck converter
- Wide I_{OUT} buck converter
- 80-mV input boost converter
- Switched capacitor DC-DC converter
 - Integration of MLCCs on die
- Summary

Emerging Applications

Requirements for IoT / Wearable Devices

Ultra-Low Power for IoT

Minimum Energy at Low V_{DD}

• Energy efficient operation at $V_{DD} = 0.3V$

Our Sub-0.5V Circuits

Key Techniques for Sub-0.5V Circuits

0.5V SoC for Image Processing

TEG: Thermoelectric generator

Integrated power management circuits are important to achieve energy-efficient IoT systems.

M. Nomura, et al., VLSI Symp 2013

Outline

Energy-efficiency in IoT systems

Wide I_{OUT} buck converter

80-mV input boost converter

Switched capacitor DC-DC converter

• Integration of MLCCs on die

♦ Summary

Target of Gate Boosted Buck Converter

■ Target: P_{OUT}/P_{IN}>90% @ P_{OUT}=2μW~50μW

Low Quiescent Power (≈ Controller Power)

Concept of Proposed Buck Converter

On-chip Gate Boost for Power Transistors

2 power rails are generated by on-chip switched-capacitor (SC) DC-DC converters.

 \rightarrow Loss in M_P and M_N is reduced.

On-chip Gate Boosted Buck Converter

1050um		
	Technology	40-nm CMOS
	Input voltage	0.45V
	Output voltage	0.34V~0.44V
	Output power	270nW~165μW
	Output ripple	<5mV
	Max. efficiency	97% at 7µW
	Quiescent power at I _{out} =0	140nW
PWM controller	Active area	0.043 mm ²
Power transistors 2V _{IN} SC DC-DC -V _{IN}	SC DC-DC	
40nm CMOS	X. Zhang, et al., VL	SI Symp 2012

Measured Efficiency vs. Output Power

>90% efficiency is achieved from $2\mu W$ to $50\mu W$. (Ideal LDO= $\frac{0.4V}{0.45V}$ =89%)

Comparison with DC-DC Converters

efficiency (<40µW) is achieved.

Outline

Energy-efficiency in IoT systems

• 0.45-V input buck converter

Wide I_{OUT} buck converter

80-mV input boost converter

Switched capacitor DC-DC converter

• Integration of MLCCs on die

♦ Summary

18

Buck Converter for Wide IOUT

- Sleep mode consumes more than 95% energy
- BLE specifications: 15 mA (active), 1 µA (sleep)
- Load current range > 10⁴

Low Efficiency at $I_{OUT} < 1\mu A$

Buck converter for IoT

- Efficiency should be improved in µ-A region
- \rightarrow Save energy consumption and extend battery lifetime

Conv. Buck Converter in DCM

Discontinuous conduction mode (DCM)

DC power of the continuoustime comparator degrades the efficiency of buck converter.

Simulated Power Dissipation

Power dissipation of hysteresis buck converter:

Even the I_{BIAS}=1µA also decreases η to 34% @ I_{LOAD}=1µA
Remove the continuously-on Comparator

Proposed Clocked Hysteresis Control Buck Converter²³

Load Wake-up Operation

WAKE_UP: reset f_{CLK} to highest frequency (2²¹ f_{CLK})
Asynchronized logic can be designed to reset f_{CLK} immediately

Leakage-Based DCO

- Power: proportional to the oscillating frequency
- No additional voltage reference
- Leakage current is designed as bias

Measured Oscillator Power vs. Freq.

- Measured 3 chip showing small variation on f_{CLK}/I_(VDD,OSC)
- f_{CLK} = 7Hz ~ 6MHz controlled by 22 bits thermometer code
- P_(VDD,OSC) = 3.5nW ~ 32µA when V_{DD,OSC} = 0.6V

Chip Micrograph

C.-S. Wu, et al., IEEE Trans. on VLSI, 2018

Efficiency of Buck Conveter

Performance Comparison

	ISSCC'15 [2.7]	CICC'15 [2.8]	VLSI'15 [2.9]	VLSI'11 [2.28]	This work
Technology	180nm CMOS	350nm CMOS	180nm CMOS	250nm CMOS	180nm CMOS
Die size	1.44mm ²	2.88mm ²	2.42mm ²	0.21mm ²	0.71mm ² *
V _{IN} (V)	0.6/1.2	2.2 – 6	3	1.2 – 2.5	2.4 – 3.3
V _{OUT} (V)	0.35 – 0.5	2.5	1	1	1.5 – 1.6
I _{LOAD}	100nA – 20mA	1µA – 100mA	10nA – 1µA	1µA – 100mA	500nA – 20mA
Peak eff. η _{ΡΕΑΚ}	92%	95%	87%	95.2	90.4%
η @ Ι _{LOAD} =1μΑ	75%	78%	87%	65%	90.4%
Inductor value L	4.7µH	2.2µH	47µH	1.5µH	4.7µH
Control methodology	PWM, PFM, and AM	Hysteresis control	Constant on-time	Dynamic on/off time	Clocked hysteresis control

* Active area

■ $\eta > 87\%$ over 500nA-20mA I_{Load} with the proposed clocked hysteresis control

Outline

- Energy-efficiency in IoT systems
- 0.45-V input buck converter
- ♦ Wide I_{OUT} buck converter
- 80-mV input boost converter
- Switched capacitor DC-DC converter
 - Integration of MLCCs on die
- ♦ Summary

Energy Harvesters

Single-cell Solar Cell

- Producing electricity from light
- Output : 500~600mV (Outdoor),

100~200mV (Dark office)

p-n junction

Thermoelectric Generator

- Producing electricity from heat
- Output : 10mV/K~50mV/K

⇒ From body heat (2K) : 100mV

DC/DC for Energy Harvester

Target startup voltage of DC/DC converter is 100mV.

Proposed Dual-Mode Boost

Dual Modes Operation

Measured Boost Waveforms

Comparison of Startup Converter

Ref	Startup		Pook	Program	CMOS	
	Mechanism	<i>Min.</i> Voltage	Startup time	Efficiency	time for Osc.	process
[3]	Boost with mechanical switch	35mV	18ms	58%@ V _{IN} =50mV	Ι	350nm
[4]	External Voltage	650mV	N/A	75%@ V _{IN} =100mV	-	130nm
[5]	Charge pump	95mV	262ms	72%@ V _{IN} =100mV	60min	65nm
This work	Boost with CPPG	80mV	4.8ms	60%@ V _{IN} =80mV	3min	65nm

Energy Harvesting from Thermoelectric Generator

Outline

- Energy-efficiency in IoT systems
- 0.45-V input buck converter
- ♦ Wide I_{OUT} buck converter
- 80-mV input boost converter
- Switched capacitor DC-DC converter
 - Integration of MLCCs on die
- Summary

Multi-Layered Ceramic Capacitor (MLCC)

IVRs for Energy Efficient CPUs

Integrated Buck Converter (Haswell)

N. Kurd et al., "Haswell: A Family of IA 22nm Processors," IEEE ISSCC, pp. 112-113, 2014. (Intel)

Inductors on PCB and On-die Capacitors

41

J. Douglas, "Fine-Grained Power Management Using Integrated DC-DC Converters," Short Course in IEEE Symposium on VLSI Circuits, 2014. (Intel)

Inductors vs. Capacitors

High energy density of capacitors than inductors.

S. Sanders et al., TPEL 2013

Scaling of MLCCs

Multi-Layered Ceramic Capacitor (MLCC)

Switched Capacitor (SC) DC-DC Converter

Fabricated SC DC-DC Converter in 180nm

2.7-V input SC DC-DC converter mounting four 100-nF 0402 MLCCs on 180-nm CMOS die

Fabricated SC DC-DC Converter in 180nm

T. Sai, et al., IEEE TCAS II, 2018

Comparison in Step-down DC-DC Converters

47

Summary

- Integrated power management circuits for energyefficient IoT systems
- ◆ Gate boosting for low V_{IN} DC-DC converters
- Clocked comparator for low I_{OUT} buck converter
- Integration of MLCCs on die for SC DC-DC

converter