

Integrated Power Management Circuits for Energy-Efficient IoT Systems

Prof. Dr. Makoto Takamiya Institute of Industrial Science Tokyo University

mtaka@iis.u-tokyo.ac.jp

January 28, 2021

About SSCs

SSCS Education Material:

- ✓ SSCS Resource Center free for SSCS members includes short courses, tutorials, CONFedu series, lecture series, past webinars
- ✓ Distinguished Lecture Program: exclusive to SSCS members
- ✓ Webinars: free access to all SSCS members
- ✓ Membership is only \$22 for 2018
- ✓ **\$11 for students**
- ✓ Join at www.sscs.org

https://resourcecenter.sscs.ieee.org/

About Prof. Dr. Makoto Takamiya

- 1. 1997, 2000, M.S., and Ph.D. degrees in electronic engineering from the University of Tokyo,
- 2. 2000, NEC Corporation, Japan, where he was engaged in the circuit design of high-speed digital LSI's.
- 3. 2005, joined University of Tokyo, Japan in 2005, where he is now a Professor of Institute of Industrial Science.
- 4. He received 2009 and 2010 IEEE Paul Rappaport Awards of the IEEE Electron Devices Society.
- 5. Distinguished contribution to SSCs

SPEAKERS	
	Prof. Takamiya of University of Tokyo Topic: Integrated Power Management Circuits for Energy-Efficient IoT Systems Integrated voltage regulation is critical to the energy efficiency in every systems ranging from high-end processors to ultra-low power IoT devices. Challenges of the integrated power management circuits include the large number of voltage domains, DVFS per domain, large current transients, and wide dynamic range of current loads. In addition, IoT systems present new challenges to the voltage regulators, keeping the high power conversion efficiency at the ultra-low input voltage (< 0.1V) and/or the ultra-small output current (< 1uA). In this ent several circuit designs of voltage regulators for IoT systems, including a sub-0.5V digital LDO / digital-analog hybrid LDO, a sub-0.5V-
input buck con Biography:	verter, and a sub-0.1V-input boost converter for the thermoelectric energy harvesting.
1997, and 200 University of To Berkeley as a wearable and I Solid-State Cir He formerly se	ya (S'98-M'00-SM'14) received the B.S., M.S., and Ph.D. degrees in electronic engineering from the University of Tokyo, Japan, in 1995, 0, respectively. In 2000, he joined NEC Corporation, Japan, where he was engaged in the circuit design of high speed digital LSI's. He joined kyo, Japan in 2005, where he is now a Professor of Institute of Industrial Science. From 2013 to 2014, he stayed at University of California, isiting scholar. His research interests include the integrated power management circuits for wireless powering and energy harvesting for of applications, and the digital gate driver IC for power electronics. He is a member of the technical program committee of IEEE Internationa cuits Conference (ISSCC) and is a Far East Regional Chair in ISSCC 2020. He is a Distinguished Lecturer of IEEE Solid-State Circuits Society. rved on the technical program committees of IEEE Symposium on VLSI Circuits from 2009 to 2017 and IEEE Custom Integrated Circuits m 2006 to 2011. He received 2009 and 2010 IEEE Paul Rappaport Awards and the best paper award in 2013 IEEE Wireless Power Transfer
Email: mtaka@	viis.u-tokyo.ac.jp

https://events.vtools.ieee.org/m/254880

Key References

- □ X. Zhang, P. -H. Chen, Y. Ryu, K. Ishida, Y. Okuma, K. Watanabe, T. Sakurai, and M. Takamiya, "A 0.45-V Input On-Chip Gate Boosted (OGB) Buck Converter in 40-nm CMOS with More Than 90% Efficiency in Load Range from 2µW to 50µW," IEEE Symposium on VLSI Circuits, Hawaii, pp. 194-195, June 2012.
- C.-S. Wu, M. Takamiya, and T. Sakurai, "Clocked Hysteresis Control Scheme With Power-Law Frequency Scaling in Buck Converter to Improve Light-Load Efficiency for IoT Sensor Nodes," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 26, No. 6, pp. 1139-1150, June 2018.
- P. -H. Chen, X. Zhang, K. Ishida, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, "An 80 mV Startup Dual-Mode Boost Converter by Charge-Pumped Pulse Generator and Threshold Voltage Tuned Oscillator With Hot Carrier Injection," IEEE Journal of Solid-State Circuits, Vol. 47, No. 11, pp. 2554-2562, Nov. 2012.
- T. Sai, Y. Yamauchi, H. Kando, T. Funaki, T. Sakurai, and M. Takamiya, "2/3 and 1/2 Reconfigurable Switched Capacitor DC-DC Converter With 92.9% Efficiency at 62 mW/mm2 Using Driver Amplitude Doubler," IEEE Transactions on Circuits and Systems—II: Express Briefs, Vol. 65, No. 11, pp. 1654 - 1658, Nov. 2018.