AI for HPC: Experiences and Opportunities
The Connecticut Section's joint chapter of the Computer Society, Systems, Man, & Cybernetics, and the Social Implications of Technology presents IEEE Distinguished Speaker, Prof. Anne C. Elster.
Date and Time
Location
Hosts
Registration
- Date: 25 Apr 2019
- Time: 06:00 PM to 08:00 PM
- All times are (GMT-05:00) US/Eastern
- Add Event to Calendar
- 230 Park Ave
- University of Bridgeport
- Bridgeport, Connecticut
- United States 06604
- Building: Mandeville Hall
- Room Number: Room 104
Speakers
Prof. Anne C. Elster
AI for HPC: Experiences and Opportunities
This talk will be focused on how AI techniques can be used in the development of HPC environment and tools. As larger HPC systems become more and more heterogeneous by adding GPUs and other devices for performance and energy efficiency, they also become more complex to write and optimize the HPC applications for. For instance, both CPU and GPUs have several types of memories and caches that codes need to be optimized for. We show how AI techniques can help us pick among 10s of thousands of parameters one ends up needing to optimize for the best possible performance of some given complex applications. Ideas for future opportunities will also be discussed.
Biography:
Dr. Anne C. Elster is a Professor of HPC in Computer Science ant NTNU and was the Co-founder and Co-director of Norwegian University of Science and Technology’s Computational Science and Visualization program and also established the IDI/NTNU HPC-Lab, a well- respected research lab in heterogeneous computing that regularly receives international visitors. She is also a Visiting Scientist at the University of Texas at Austin.
Her current research interests are in high-performance parallel computing, focusing on developing good models and tools for heterogeneous computing and parallel software environments. Methods that include applying machine learning for code optimization and image processing, and developing parallel scientific codes that interact visually with the users by taking advantage of the powers in modern GPUs. Her novel fast linear bit-reversal algorithm is still noteworthy.
She has been an active participant and committee member of ACM/IEEE SC (Supercomputing) since 1990, served on the MPI 1 & 2 Forums (1993–96), as well as several other professional committees. She is a Senior member of IEEE, Life member of AGU (American Geophysical Union, as well as a member of ACM, SIAM and Tekna. Funding partners/collaborators include EU H2020, The Research Council of Norway, AMD, ARM, NVIDIA, Statoil and Schlumberger.
She works very closely with her graduate students and has so far supervised over 75 masters theses, several of which have received prizes, has supervised several PhD and Post Docs, and served on PhD committees internationally, including in Denmark, Italy, Saudi Arabia, Sweden, and the United States. She is currently supervising 1 Post Doc, 3 PhD students + 2 to be hired in 2018/19 (main advisor) and is co-supervisor for 2 more PhD students, as well as several master students. She has published widely in the field of high-performance computing (HPC). She has been the main advisor for more than 75 master students.
Dr. Elster has also given many invited lectures throughout her career. Recent invited talks include: “AI for HPC: Experiences and Opportunities” given at the ASC Workshop in Nanchang, China, May 2018 and “Supercompting and AI: Impact and Opportunities,” to be given at Supercomputing Frontiers 2019, in Warsaw, Poland in March 2019. The version of the latter was also presented at MIT, and Stony Brook during her sabbatical at The University of Texas at Austin in Fall 2018.
Norwegian University of Science and Technology (NTNU-Trondheim)
Agenda
6pm: Networking
6:30pm to 7:30pm: AI for HPC: Experiences and Opportunities
7:30pm to 8pm: Questions & wrap-up
Parking: There is a parking lot next to the building (by Park Ave) and a second lot in front of the building (across Park Ave).