Rebuilding the theoretical foundations of communications and computing by Ph.D. Mérouane Debbah

#Signal #Processing #Computing #Nyquist #Sampling
Share

Rebuilding the theoretical foundations of communications and computing by Ph.D. Mérouane Debbah


Abstract: We are arriving at the end of an era that has guided the ICT for the last century. Quite remarkably, many of the remarkable engineering breakthroughs in Communication (the famous “G” era) and Computing (the famous “Moore’s” era) were based on quite old Basics. Indeed, the Nyquist Sampling theorem dates back to 1924, the Shannon’s Law to 1948 and  the Von Neumann Architecture to 1946. Today, we are desperately lacking guidance for new engineering solutions as we have approached those limits and there is a need for the whole industry to take its share of responsibility by re-investing massively in the fundamentals to revive a new century of engineering progress. In this talk, we will re-discuss the assumptions  made a century ago and provide a research roadmap showcasing the fundamental role of Mathematics and Physics to unlock the theoretical barriers.



  Date and Time

  Location

  Hosts

  Registration



  • Date: 07 May 2021
  • Time: 09:00 AM to 10:00 AM
  • All times are (GMT-06:00) Mexico/General
  • Add_To_Calendar_icon Add Event to Calendar
If you are not a robot, please complete the ReCAPTCHA to display virtual attendance info.
  • Guadalajara, Jalisco
  • Mexico

  • Contact Event Host
  • Starts 10 March 2021 03:32 PM
  • Ends 07 May 2021 09:32 AM
  • All times are (GMT-06:00) Mexico/General
  • No Admission Charge


  Speakers

Ph.D. Mérouane Debbah Ph.D. Mérouane Debbah of Huawei

Topic:

Rebuilding the theoretical foundations of communications and computing.

Abstract: We are arriving at the end of an era that has guided the ICT for the last century. Quite remarkably, many of the remarkable engineering breakthroughs in Communication (the famous “G” era) and Computing (the famous “Moore’s” era) were based on quite old Basics. Indeed, the Nyquist Sampling theorem dates back to 1924, the Shannon’s Law to 1948 and  the Von Neumann Architecture to 1946. Today, we are desperately lacking guidance for new engineering solutions as we have approached those limits and there is a need for the whole industry to take its share of responsibility by re-investing massively in the fundamentals to revive a new century of engineering progress. In this talk, we will re-discuss the assumptions  made a century ago and provide a research roadmap showcasing the fundamental role of Mathematics and Physics to unlock the theoretical barriers.

Biography:

Mérouane Debbah  received the M.Sc. and Ph.D. degrees from the Ecole Normale Supérieure Paris-Saclay, France. He was with Motorola Labs, Saclay, France, from 1999 to 2002, and also with the Vienna Research Center for Telecommunications, Vienna, Austria, until 2003. From 2003 to 2007, he was an Assistant Professor with the Mobile Communications Department, Institut Eurecom, Sophia Antipolis, France. In 2007, he was appointed Full Professor at CentraleSupelec, Gif-sur-Yvette, France. From 2007 to 2014, he was the Director of the Alcatel-Lucent Chair on Flexible Radio. Since 2014, he has been Vice-President of the Huawei France Research Center. He is jointly the director of the Mathematical and Algorithmic Sciences Lab as well as the director of the Lagrange Mathematical and Computing Research Center. He has managed 8 EU projects and more than 24 national and international projects. His research interests lie in fundamental mathematics, algorithms, statistics, information, and communication sciences research. He is an IEEE Fellow, an EURASIP Fellow, a WWRF Fellow, and a Membre émérite SEE. He was a recipient of the ERC Grant MORE (Advanced Mathematical Tools for Complex Network Engineering) from 2012 to 2017. He was a recipient of the Mario Boella Award in 2005, the IEEE Glavieux Prize Award in 2011, the Qualcomm Innovation Prize Award in 2012, the 2019 IEEE Radio Communications Committee Technical Recognition Award and the 2020 SEE Blondel Medal. He received more than 20 best paper awards, among which the 2007 IEEE GLOBECOM Best Paper Award, the Wi-Opt 2009 Best Paper Award, the 2010 Newcom++ Best Paper Award, the WUN CogCom Best Paper 2012 and 2013 Award, the 2014 WCNC Best Paper Award, the 2015 ICC Best Paper Award, the 2015 IEEE Communications Society Leonard G. Abraham Prize, the 2015 IEEE Communications Society Fred W. Ellersick Prize, the 2016 IEEE Communications Society Best Tutorial Paper Award, the 2016 European Wireless Best Paper Award, the 2017 Eurasip Best Paper Award, the 2018 IEEE Marconi Prize Paper Award, the 2019 IEEE Communications Society Young Author Best Paper Award and the Valuetools 2007, Valuetools 2008, CrownCom 2009, Valuetools 2012, SAM 2014, and 2017 IEEE Sweden VT-COM-IT Joint Chapter best student paper awards. He is an Associate Editor-in-Chief of the journal Random Matrix: Theory and Applications. He was an Associate Area Editor and Senior Area Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSING from 2011 to 2013 and from 2013 to 2014, respectively. From 2021 to 2022, he serves as an IEEE Signal Processing Society Distinguished Industry Speaker.

Address:France