Neural Interfaces for Controlling Finger Movements
Please register for this event and the web details will be emailed to you on the evening prior to the event.
Abstract: Brain machine interfaces or neural prosthetics have the potential to restore movement to people with paralysis or amputation, bridging gaps in the nervous system with an artificial device. Microelectrode arrays can record from hundreds of individual neurons in motor cortex, and machine learning can be used to generate useful control signals from this neural activity. Performance can already surpass the current state of the art in assistive technology in terms of controlling the endpoint of computer cursors or prosthetic hands. The natural next step in this progression is to control more complex movements at the level of individual fingers. Our lab has approached this problem in three different ways. For people with upper limb amputation, we acquire signals from individual peripheral nerve branches using small muscle grafts to amplify the signal. Human study participants have recently been able to control individual fingers online using indwelling EMG electrodes within these grafts. For spinal cord injury, where no peripheral signals are available, we implant Utah arrays into finger areas of motor cortex, and have successfully decoded flexion and extension in multiple fingers simultaneously. Decoding “spiking band” activity at much lower sampling rates, we recently showed that power consumption of an implantable device could be reduced by an order of magnitude compared to existing broadband approaches, and fit within the specification of existing systems for upper limb functional electrical stimulation. Finally, finger control is ultimately limited by the number of independent electrodes that can be placed within cortex or the nerves, and this is in turn limited by the extent of glial scarring surrounding an electrode. Therefore, we developed an electrode array based on 8 um carbon fibers, no bigger than the neurons themselves to enable chronic recording of single units with minimal scarring. The long-term goal of this work is to make neural interfaces for the restoration of hand movement a clinical reality for everyone who has lost the use of their hands.
Date and Time
Location
Hosts
Registration
- Date: 17 Jan 2022
- Time: 06:00 PM to 07:30 PM
- All times are (GMT-07:00) Canada/Mountain
- Add Event to Calendar
- Calgary, Alberta
- Canada
- Starts 13 December 2021 07:00 AM
- Ends 17 January 2022 06:00 PM
- All times are (GMT-07:00) Canada/Mountain
- No Admission Charge
Speakers
Cynthia Chestek, PhD of University of Michigan
Neural Interfaces for Controlling Finger Movements
Abstract: Brain machine interfaces or neural prosthetics have the potential to restore movement to people with paralysis or amputation, bridging gaps in the nervous system with an artificial device. Microelectrode arrays can record from hundreds of individual neurons in motor cortex, and machine learning can be used to generate useful control signals from this neural activity. Performance can already surpass the current state of the art in assistive technology in terms of controlling the endpoint of computer cursors or prosthetic hands. The natural next step in this progression is to control more complex movements at the level of individual fingers. Our lab has approached this problem in three different ways. For people with upper limb amputation, we acquire signals from individual peripheral nerve branches using small muscle grafts to amplify the signal. Human study participants have recently been able to control individual fingers online using indwelling EMG electrodes within these grafts. For spinal cord injury, where no peripheral signals are available, we implant Utah arrays into finger areas of motor cortex, and have successfully decoded flexion and extension in multiple fingers simultaneously. Decoding “spiking band” activity at much lower sampling rates, we recently showed that power consumption of an implantable device could be reduced by an order of magnitude compared to existing broadband approaches, and fit within the specification of existing systems for upper limb functional electrical stimulation. Finally, finger control is ultimately limited by the number of independent electrodes that can be placed within cortex or the nerves, and this is in turn limited by the extent of glial scarring surrounding an electrode. Therefore, we developed an electrode array based on 8 um carbon fibers, no bigger than the neurons themselves to enable chronic recording of single units with minimal scarring. The long-term goal of this work is to make neural interfaces for the restoration of hand movement a clinical reality for everyone who has lost the use of their hands.
Biography:
Cynthia A. Chestek received the B.S. and M.S. degrees in electrical engineering from Case Western Reserve University in 2005 and the Ph.D. degree in electrical engineering from Stanford University in 2010. She is now an associate professor of Biomedical Engineering at the University of Michigan, Ann Arbor, MI, where she joined the faculty in 2012. She runs the Cortical Neural Prosthetics Lab, which focuses on brain and nerve control of finger movements as well as to high-density carbon fiber electrode arrays. She is the author of 53 full-length scientific articles. Her research interests include high-density interfaces to the nervous system for the control of multiple degree of freedom hand and finger movements.