Introduction to Practical Neural Networks and Deep Learning (Part I)

Share

Course Format:   Live Webinar, 3 hours of instruction! Series Overview:   From the book introduction: “Neural networks and deep learning currently provides the best solutions to many problems in image recognition, speech recognition, and natural language processing.”

This Part 1 and the planned Part 2, (to be confirmed) series of courses will teach many of the core concepts behind neural networks and deep learning.

This is a live instructor-led introductory course on Neural Networks and Deep Learning. It is planned to be a two-part series of courses. The first course is complete by itself and covers a feedforward neural network (but not convolutional neural network in Part 1). It will be a pre-requisite for the planned Part 2 second course. The class material is mostly from the highly-regarded and free online book “Neural Networks and Deep Learning” by Michael Nielsen, plus additional material such as some proofs of fundamental equations not provided in the book.

More from the book introduction:  Reference book: “Neural Networks and Deep Learning” by Michael Nielsen, http://neuralnetworks and deeplearning.com  “We’ll learn the core principles behind neural networks and deep learning by attacking a concrete problem: the problem of teaching a computer to recognize handwritten digits. …it can be solved pretty well using a simple neural network, with just a few tens of lines of code, and no special libraries.”

“But you don’t need to be a professional programmer.”

The code provided is in Python, which even if you don’t program in Python, should be easy to understand with just a little effort.

Benefits of attending the series:
* Learn the core principles behind neural networks and deep learning.
* See a simple Python program that solves a concrete problem: teaching a computer to recognize a handwritten digit.
* Improve the result through incorporating more and more core ideas about neural networks and deep learning.
* Understand the theory, with worked-out proofs of fundamental 

Pre-requisites: There is some heavier mathematics in learning the four fundamental equations behind backpropagation, so a basic familiarity with multivariable calculus and matrix algebra is expected, but nothing advanced is required. (The backpropagation equations can be also just accepted without bothering with the proofs since the provided Python code for the simple network just make use of the equations.) Basic familiarity with Python or similar computer language.

 



  Date and Time

  Location

  Hosts

  Registration



  • Date: 15 Oct 2022
  • Time: 09:00 AM to 12:00 PM
  • All times are (GMT-05:00) US/Eastern
  • Add_To_Calendar_icon Add Event to Calendar

On-Line Course 

  • Boston, Massachusetts
  • United States

  • Starts 27 April 2022 11:00 AM
  • Ends 14 October 2022 05:00 PM
  • All times are (GMT-05:00) US/Eastern
  • Admission fee ?


  Speakers

CL Kim

Topic:

Introduction to Practical Neural Networks and Deep Learning (Part 1)

Biography:

CL Kim works in Software Engineering at CarGurus, Inc. He has graduate degrees in Business Administration and in Computer and Information Science from the University of Pennsylvania. He had previously taught for a few years the well-rated IEEE Boston Section class on introduction to the Android platform and API.

Address:United States