Distinguished Lecture – Graphene on cubic silicon carbide: a platform on silicon for More-Than-Moore integrated technologies

#Graphene #More-Than-Moore #integrated
Share

Harnessing graphene’s properties on a silicon platform could augment integrated technologies with a broad range of novel miniaturized functionalities. We will review the learnings from the development of our epitaxial graphene on silicon carbide on silicon technology and some of its most promising applications. This platform allows to obtain any complex graphene -coated silicon carbide 3D nanostructures in a site – selective fashion at the wafer -scale and with sufficient adhesion for integration [1, 2]. Key capabilities for nano-optics and metal surfaces in the MIR are specifically unlocked by the graphene/silicon carbide combination [3].

We have recently demonstrated that the sheet resistance of epitaxial graphene on 3C-SiC on silicon is comparable to that of epitaxial graphene on SiC wafers, despite substantially smaller grains. We also indicate that the control of the graphene interfaces, particularly when integrated, can be a more important factor than achieving large grain sizes [4]. In addition, we show that well- engineered defects in graphene are preferable to defect -free graphene for most electrochemical applications, including biosensing. Promising examples of application of this technology in the More than Moore domain include integrated energy storage [5], MIR sensing and detection [6], and sensors for electro-encephalography [7].

 

[1] B.Cunning et al, Nanotechnology 25 (32), 325301, 2014 [2] F.Iacopi et al, Journal of Materials Research 30 (5), 609-616, 2015

[3] P.Rufangura e al, Journal of Physics: Materials 3 (3), 032005, 2020 [4] A.Pradeepkumar et al, ACS Applied Nano Materials 3 (1), 830-841, 2019 [5] M.Amjadipour, D.Su and F.Iacopi, Batteries & Supercaps 3 (7), 587-595, 2020 [6] P.Rufangura et al, Nanomaterials 11 (9), 2339, 2021 [7] S.Faisal et al, Journal of Neural Engineering 18 (6), 066035, 2021.



  Date and Time

  Location

  Hosts

  Registration



  • Date: 09 Jul 2022
  • Time: 10:00 AM to 11:30 AM
  • All times are (UTC+08:00) Kuala Lumpur
  • Add_To_Calendar_icon Add Event to Calendar
If you are not a robot, please complete the ReCAPTCHA to display virtual attendance info.
  • Contact Event Host
  • Co-sponsored by TAM Malaysia, IET Malaysia, IEM Penang branch, Tech Dome Penang
  • Survey: Fill out the survey
  • Starts 01 June 2022 10:57 AM
  • Ends 08 July 2022 11:55 PM
  • All times are (UTC+08:00) Kuala Lumpur
  • No Admission Charge


  Speakers

Prof Francesca lacopi Prof Francesca lacopi

Topic:

Graphene on cubic silicon carbide: a platform on silicon for More-Than-Moore integrated technologies

Harnessing graphene’s properties on a silicon platform could augment integrated technologies with a broad range of novel miniaturized functionalities. We will review the learnings from the development of our epitaxial graphene on silicon carbide on silicon technology and some of its most promising applications. This platform allows to obtain any complex graphene -coated silicon carbide 3D nanostructures in a site – selective fashion at the wafer -scale and with sufficient adhesion for integration [1, 2]. Key capabilities for nano-optics and metal surfaces in the MIR are specifically unlocked by the graphene/silicon carbide combination [3].

We have recently demonstrated that the sheet resistance of epitaxial graphene on 3C-SiC on silicon is comparable to that of epitaxial graphene on SiC wafers, despite substantially smaller grains. We also indicate that the control of the graphene interfaces, particularly when integrated, can be a more important factor than achieving large grain sizes [4]. In addition, we show that well- engineered defects in graphene are preferable to defect -free graphene for most electrochemical applications, including biosensing. Promising examples of application of this technology in the More than Moore domain include integrated energy storage [5], MIR sensing and detection [6], and sensors for electro-encephalography [7].

 

[1] B.Cunning et al, Nanotechnology 25 (32), 325301, 2014 [2] F.Iacopi et al, Journal of Materials Research 30 (5), 609-616, 2015

[3] P.Rufangura e al, Journal of Physics: Materials 3 (3), 032005, 2020 [4] A.Pradeepkumar et al, ACS Applied Nano Materials 3 (1), 830-841, 2019 [5] M.Amjadipour, D.Su and F.Iacopi, Batteries & Supercaps 3 (7), 587-595, 2020 [6] P.Rufangura et al, Nanomaterials 11 (9), 2339, 2021 [7] S.Faisal et al, Journal of Neural Engineering 18 (6), 066035, 2021.

Biography:

Professor Francesca Iacopi has over 20 years’ industrial and academic research expertise in semiconductor technologies, with over 130 peer-reviewed publications and 10 granted US patents, spanning from interconnects, CMOS devices and packaging. Her research focuses on the translation of basic scientific advances in nanomaterials and novel device concepts into implementable technologies. She was recipient of an MRS Gold Graduate Student Award (2003), an Australian Research Council Future Fellowship (2012), and a Global Innovation Award in Washington DC (2014) and was listed among the most innovative engineers by Engineers Australia (2018).  Francesca is a Fellow of the Institution of Engineers Australia, an IEEE EDS Distinguished Lecturer and regular volunteer for IEEE and MRS. She leads the Integrated Nanosystems Lab, in the Faculty of Engineering and IT, University of Technology Sydney. She is an Associate Investigator of the Centre of Excellence in Low-Energy Electronics Technologies (FLEET) and a Chief Investigator of the CoE in Transformative Meta-Optical Systems (TMOS), funded by the Australian Research Council.

Email:

Address:University of Technology Sydney, , Sydney, New South Wales, Australia