Deep Learning for the Physical Layer with Sionna
Deep Learning for the Physical Layer with Sionna
By: Dr. Sebastian Cammerer
ZOOM LINK INFORMATION
https://uqtr.zoom.us/j/82531800033?pwd=QmxCZHorRzlieUxyUHhsY1dQTHdaQT09
ID de réunion : 825 3180 0033
Mot de passe : 550807
Abstract
Machine learning for wireless communications has become an omnipresent tool in wireless communications research and it is foreseeable that it will play an increasingly important role in the future evolution of 5G as well as the development of 6G. This trend is supported by the recent 3GPP announcement to promote AI/ML as a new study item for the upcoming Release 18. To support these efforts, we present Sionna, a new open-source software library for GPU-accelerated link-level simulations and 6G research. Sionna enables rapid prototyping of complex communication system architectures and provides native support for the integration of neural networks. In the second part of the talk, we demonstrate AI/ML use-cases for the PHY layer and showcase the benefits of a data-driven system design which does not need to rely on any prior mathematical modelling and analysis of the channel.
Biography
Dr. Sebastian Cammerer is a Research Scientist at NVIDIA. Before joining NVIDIA, he received his PhD in electrical engineering and information technology from the University of Stuttgart, Germany, in 2021. He is one of the maintainers and core developers of the Sionna open-source link-level simulator. His main research topics are machine learning for wireless communications and channel coding. Further research interests include modulation, parallel computing for signal processing, and information theory. He is recipient of the VDE ITG Dissertationsaward 2022, the IEEE SPS Young Author Best Paper Award 2019, the Best Paper Award of the University of Stuttgart 2018, the Anton- und Klara Röser Preis 2016, the Rohde&Schwarz Best Bachelor Award 2015, and third prize winner of the Nokia Bell Labs Prize 2019
Date and Time
Location
Hosts
Registration
- Date: 16 Nov 2022
- Time: 12:00 PM to 01:00 PM
- All times are (UTC-05:00) Eastern Time (US & Canada)
-
Add Event to Calendar
ZOOM LINK INFORMATION
Sujet : IEEE VDL on Deep Learning for the Physical Layer with Sionna
Heure : 16 nov. 2022 12:00 Montréal
Participer à la réunion Zoom
https://uqtr.zoom.us/j/82531800033?pwd=QmxCZHorRzlieUxyUHhsY1dQTHdaQT09
ID de réunion : 825 3180 0033
Mot de passe : 550807
Une seule touche sur l’appareil mobile
+13863475053,,82531800033# États-Unis
+15642172000,,82531800033# États-Unis
Composez un numéro en fonction de votre emplacement ( des frais interurbains peuvent être applicables )
+1 386 347 5053 États-Unis
+1 564 217 2000 États-Unis
+1 646 558 8656 États-Unis (New York)
+1 646 931 3860 États-Unis
+1 669 444 9171 États-Unis
+1 669 900 9128 États-Unis (San Jose)
+1 719 359 4580 États-Unis
+1 253 215 8782 États-Unis (Tacoma)
+1 301 715 8592 États-Unis (Washington DC)
+1 309 205 3325 États-Unis
+1 312 626 6799 États-Unis (Chicago)
+1 346 248 7799 États-Unis (Houston)
+1 360 209 5623 États-Unis
ID de réunion : 825 3180 0033
Mot de passe : 550807
Trouvez votre numéro local : https://uqtr.zoom.us/u/kkiQihLVq
Participer à l’aide d’un protocole SIP
82531800033.550807@zoomcrc.com
Participer à l’aide d’un protocole H.323
162.255.37.11 (États-Unis (Ouest))
162.255.36.11 (États-Unis (Est))
115.114.131.7 (Mumbai - Inde)
115.114.115.7 (Hyderabad - Inde)
213.19.144.110 (Amsterdam Pays-Bas)
213.244.140.110 (Allemagne)
103.122.166.55 (Australie Sydney)
103.122.167.55 (Australie Melbourne)
209.9.211.110 (RAS de Hong Kong)
64.211.144.160 (Brésil)
69.174.57.160 (Canada Toronto)
65.39.152.160 (Canada Vancouver)
207.226.132.110 (Japon Tokyo)
149.137.24.110 (Japon Osaka)
Mot de passe : 550807
ID de réunion : 825 3180 0033
https://confluence.uqtr.ca/display/ZOOM/Documentation+pour+les+participants
https://confluence.uqtr.ca/display/str/ZOOM
- Starts 21 October 2022 12:00 PM
- Ends 16 November 2022 11:30 PM
- All times are (UTC-05:00) Eastern Time (US & Canada)
- No Admission Charge