IEEE / IEICE Innovative EMC and Antenna Measurement Techniques Workshop

#emc #emcs-jc #antenna #wireless
Share

Join us for half-day workshop on innovative test methods with international industry experts.   You'll learn about the new EMC site validation technique from 18 GHz to 40 GHz per ANSI C63.25.3 and under consideration by CISPR.  We conclude with an overview of novel antenna measurements using robots!  There is no cost to attend, and the workshop is open to all IEEE/IEICE members and guests, but you must register in advance!  Seating is LIMITED.


CISPR A and ANSC C63® Overview on Site Validation Measurements from 18 GHz to 40 GHz

By Nicholas Abbondante, Intertek, Boxborough MA

邦訳: 18GHz を超える周波数での FCC要求に対する試験は長年にわたって行われており、最大 231GHz まで拡張されています。 ただし、この周波数範囲に対して開発された試験サイトの検証方法はこれまでありませんでした。 18GHz 未満で認定されたサイトはその周波数を超えても許容されると想定されてきましたが、これはデータに基づいたものではありませんでした。 25GHz および 38GHz 以上で動作する送信機の出現により、サイト検証がより重要になり、遠方界と測定アンテナビーム幅内での試験が更に困難になりました。C63.25.3 ワーキング グループの目標は、18GHz から 40GHz までのサイト検証方法を開発して、将来の測定の有効性と再現性を強化し、遠方界試験の問題の解決に役立つコンパクト アンテナ テスト レンジ (CATR)やリバブレーションチャンバーなどの代替テスト サイトの検証と相関関係を提供することです。

Recent Advances in EMC Test Site Evaluation Using Advanced Antenna Measurement Techniques
By Zhong Chen, ETS-Lindgren, Cedar Park, Texas

邦訳: アンテナ校正と試験サイトの検証は、どちらも試験環境での正確なアンテナ測定が必要なため、相互に依存するプロセスです。 CISPR 16-1-4 または C63.25 で指定されているサイトVSWR は、1GHz 18GHz の試験サイトの性能を評価するための性能指数として使用されます。 CISPR法では、定在波は、いくつかの線形パスに沿ってスカラーフィールドをサンプリングすることによって測定されます。 ただし、測定を簡素化するために、試験データのサンプリングが大幅に少なくなっています。 C63.25.1 (1 18 GHz) で規定されているタイムドメインSVSWR は、アンダー サンプリングの問題に対処するために開発されました。 18GHzを超える試験では、クワイエット ゾーン(QZ) 内のより多くの場所をテストしたり、受信アンテナビームカバレージを測定したりする必要性など、新たな課題が生じます。 その結果開発されたシリンドリカル モード フィルター SVSWR は、現在 C63.25.3 (18 40 GHz) および CISPR 16 標準で積極的に検討されています。 セミナーの参加者は、テスト方法の進化の技術的背景 (何が、なぜ) と、さまざまな技術的課題の解決に高度なアンテナ測定技術がどのように使用されているかについて、より深い理解を得ることができます。

Innovative Robotic Antenna Measurements 

By Andrew Shyne, The Boeing Company, Seattle, Washington 

邦訳: 従来のアンテナテスト設備は通常、特定の測定アプリケーションを念頭に置いて設計されており、その結果、これらの設備は単一の固定測定ジオメトリで構成される傾向があります。 しかし、多軸ロボットポジショナを採用した最新のアンテナ測定レンジでは、測定タイプとスキャン形状に関してほぼ無制限の再構成が可能です。 このため、それぞれの固有のセットアップとアプリケーションを評価する継続的なニーズが生じています。 この以前は想像もできなかった柔軟性により、安全性、測定品質の向上、測定の不確実性の低減のための新たな機会がもたらされます。 これらの新しいロボットシステムは、高度なプロセッシング技術の実装を可能にする大量の特殊データを取得できます。 モデルベース システム エンジニアリングおよび開発 (MBSE/MBD) アプローチを採用すると、特定のプログラムのテスト開発および検証フェーズに関連する時間、労力、コストを大幅に削減できます。 MBSEツールを使用してテスト構成を最適化し、測定の不確実性を大幅に低減し、測定をシミュレートすることもできます。 このプレゼンテーションでは、新しいデュアル多軸ロボットアンテナ テストシステムの実装中にこれらのエンジニアリング技術がどのように活用されているかの概要を説明します。

Cylindrical Mode Filtered SVSWR LIVE Demonstration:

邦訳: シリンドリカル モード フィルター SVSWR (CMF SVSWR) は、送信アンテナ (通常は低ゲインの全方向性アンテナ) をターンテーブルの端に配置し、シングル カット ベクトル パターン測定を実行することによって測定されます。 各周波数でのターンテーブル角度の関数としてのベクトル S21 はスペクトル領域に変換され、そこでフィルターを適用してチャンバー効果を数学的に除去できます。 SVSWR は、チャンバー内の元のパターンと「クリーン」フィルター処理されたパターンを比較することによって導かれます。 このCMF SVSWR は、EMCチャンバーのクワイエット ゾーンのより包括的な評価を提供し、特別な位置決め治具を使用せずに簡単に測定できます。 デモンストレーションでは、リアルタイムで実行できるプロセッシングを含む測定プロセス全体をお見せします。 この新しい測定技術は、18GHz 40GHz EMCテストサイト評価のために ANSC C63® 委員会によって開発中の新しい規格草案 ANSI C63.25.3 に向けて検討されています。

 

 



  Date and Time

  Location

  Hosts

  Registration



  • Date: 28 May 2024
  • Time: 01:00 PM to 05:00 PM
  • All times are (UTC+09:00) Osaka
  • Add_To_Calendar_icon Add Event to Calendar
  • International Certification Center
  • 2274, Hongou, Ebina-shi,
  • Kanagawa , Kanagawa
  • Japan 243-0494
  • Building: FUJIFILM Business Innovation Corp.

  • Contact Event Host
  • Goh Furukawa, ETS-Lindgren Japan, office phone: 03-3813-7100

     

  • Co-sponsored by The Institute of Electronics, Information and Communication Engineers (IEICE)
  • Starts 07 May 2024 12:00 AM
  • Ends 24 May 2024 12:00 AM
  • All times are (UTC+09:00) Osaka
  • No Admission Charge


  Speakers

Nicholas Abbondante of Intertek

Topic:

CISPR A and ANSC C63® Overview on Site Validation Measurements from 18 GHz to 40 GHz

Testing to FCC requirements at frequencies above 18 GHz has been occurring for many years, extending up to 231 GHz; however, there has never been a test site validation method developed for this frequency range. The assumption has been that sites qualified below 18 GHz were acceptable above that frequency, but this conclusion was not based on data. With the advent of transmitters operating at 25 and 38 GHz and above, site validation has become more critical, and testing in the far-field and within the beamwidth of the measurement antenna becomes more difficult. The goal of the C63.25.3 working group is to develop site validation methods from 18 GHz to 40 GHz to enhance the validity and repeatability of future measurements and to provide validations and correlations for alternative test sites such as compact antenna test ranges (CATRs) and reverberation chambers to help resolve the far-field testing issues.

Biography:

Nicholas Abbondante has served as Intertek’s Chief EMC Engineer since 2013, responsible for technical support of Intertek’s global network of 24 EMC labs. In his 22+ years with the company, he has been involved in testing a wide range of radio and electronic equipment to EMC requirements for regulatory domains around the world, specializing in transmitters and medical devices. He is the Technical Manager of Intertek’s TCB program and is TCB Council Board Vice Chair, and serves as the CISPR/A Secretariat. An active participant in many ANSC C63 standards projects, he is chair of both C63.31 for ISM device measurement and C63.25.3 for 18-40 GHz test site validation, and was recently elected as the incoming chair of Subcommittee 4 for wireless and ISM equipment measurements. He is also a working group member of C63.10 and C63.26 for radio testing, C63.4 Emissions, C63.16 ESD, C63.33 EAS immunity and the recently completed C63.2 Receiver, C63.29 Lighting and C63.30 Wireless Power Transfer standards. Nick has a Bachelor’s degree in physics from the Worcester Polytechnic Institute (WPI) in Massachusetts, USA.  He may be reached at nicholas.abbondante@intertek.com.

Address:Boxborough, Massachusetts, United States

Zhong Chen of ETS-Lindgren

Topic:

Recent Advances in EMC Test Site Evaluation Using Advanced Antenna Measurement Techniques

Calibrating antennas and validating test sites are interdependent processes, as they both mandate accurate antenna measurements in their testing environment.  Site VSWR, as specified in CISPR 16-1-4 or C63.25, is used as the figure of merit to qualify test site performance from 1 GHz to 18 GHz.  In the CISPR method, the standing wave is measured by sampling scalar fields along several linear paths.  However, in an effort to simplify the measurement, test data are severely under sampled.  Time Domain SVSWR, as specified in C63.25.1 (1-18 GHz), was developed to address the under sampling issues. For above 18 GHz tests, new challenges emerge, such as the need to test more locations in the Quiet Zone (QZ) and to measure the receive antenna beam coverage.  Cylindrical Mode Filtered SVSWR developed as a result, which is now under active consideration in the C63.25.3 (18-40 GHz) and CISPR 16 standards. Participants of the seminar will gain a deeper understanding on technical background (the whats and whys) of the evolution of the test methods, and how advanced antenna measurement techniques are used to help to solve the different technical challenges.

Biography:

Zhong Chen is Chief Engineer at ETS-Lindgren, located in Cedar Park, Texas.  He has over 25 years of experience in RF testing, anechoic chamber design, as well as EMC antenna and field probe design and measurements.  He is an active member of the ANSC C63® committee currently serving as Vice-Chair and is the immediate past Chair of Subcommittee 1 which is responsible for the antenna calibration (ANSI C63.5) and chamber/test site validation standards (ANSI C63.4 and the ANSI C63.25 series).  Mr. Chen is chair of the IEEE Standard 1309 committee responsible for developing calibration standards for field probes, and IEEE Standard 1128 for absorber evaluation.  Currently he is a member of the IEEE EMC Society Board of Directors and a former member of the Antenna Measurement Techniques Association (AMTA) Board of Directors. He is a past Distinguished Lecturer for the EMC Society and is recognized as an AMTA Fellow.  His research interests include measurement uncertainty, time domain measurements for site validation and antenna calibration, and development of novel RF absorber materials. Several papers authored and co-authored by Mr. Chen have received best paper recognition at global conferences.  Zhong Chen received his M.S.E.E. degree in Electromagnetics from the Ohio State University at Columbus.  He may be reached at zhong.chen@ets-lindgren.com.

Address:Cedar Park, Texas, United States


Andrew Shyne of The Boeing Company

Topic:

Innovative Robotic Antenna Measurements

Traditional antenna test facilities are typically designed with a specific measurement application in mind, and as a result these facilities tend to be comprised of single fixed measurement geometry.  However, modern antenna measurement ranges employing multi-axis robotic positioners provide a near limitless degree of re-configurability in terms of measurement types and scan geometries. This drives an ongoing need to evaluate each unique setup and application.  This previously unimaginable flexibility offers new opportunities for the improvement of safety, measurement quality and reduction of measurement uncertainties. These new robotic systems are capable of acquiring large amounts of special data allowing for the implementation of advanced post processing techniques.  Model Based Systems Engineering and Development (MBSE/MBD) approaches can be employed to dramatically reduce the time, effort and cost associated with the test development and validation phases of a given program.  MBSE tools can also be used to optimize test configurations to greatly reduce measurement uncertainties and simulate measurements.  This presentation provides an overview of how these engineering techniques are being harnessed during the implementation of a new dual multi-axis robotic antenna test system.

Biography:

Andrew Shyne is a Radio Frequency/Microwave Engineer with The Boeing Company based in Seattle, Washington.  He attended the University of Portland in Portland, Oregon, where he received a bachelor's degree in Electrical Engineering in 2020. During the summer of 2018, Andrew worked as an engineering intern at Boeing OKC on the Mission Computing Hardware (MCHW) team. During the summer of 2019, Andrew worked as an RF/Microwave Electronics Design intern at Boeing, El Segundo, CA. Upon graduation from the University of Portland, Andrew returned to Boeing El Segundo where he worked for two years as an RF/Microwave Engineer on the RF Products team. His efforts were focused on module and slice integration of a Digital Transponder Unit. In the summer of 2022, Andrew moved to Boeing Seattle where he works at the Radar Cross Section Compact Range. Outside of his range duties, Andrew supports various investment projects in an effort to increase efficiency when collecting data on commercial airplane tests such as IPL (interference path loss) and HIRF (high-intensity radiated fields) tests.  Andrew is currently attending Purdue University pursuing his Master of Science degree in Electrical and Computer Engineering with a focus in fields and optics. His anticipated graduation date is Spring 2025.  He may be reached at andrew.j.shyne@boeing.com.

Address:Seattle, Washington, United States





Agenda

C

1:00 - 3:00

Technical Sessions: Conference Room

-          Greetings

-          Presentations

 3:00 - 3:30

Refreshment Break: Conference Room - Sponsored by ETS-Lindgren

3:30 - 5:00

Demonstration:  EMC Chamber

-          Live Demonstration of Cylindrical Mode Filtered SVSWR

-       Closing Discussions with All Speakers



There is no cost to attend, but you must register in advance to ensure adequate seating and meals.  Please register via the link above.  Attendance is LIMITED and will be filled on a first-come, first-served basis.  

The meeting location is approximately 15 minutes on the bus for Ebina Center from Ebina Station on the Odakyu Line, JR line and Sotestu Line.