DML: RF Design for Ultra-Low-Power Wireless Communication Systems

#DML #Ultra-Low-Power #WirelessCommunicationSystems #RFDesign #IoT #RFID
Share

RF Design for Ultra-Low-Power Wireless Communication Systems
This presentation shows radio frequency (RF) design solutions for wireless sensor nodes to address
sustainability issues in the Internet of Things (IoT), which arise due to the massive deployment of
wireless IoT nodes on environmental and economic levels. Engineers can apply these RF design
solutions to improve the ultra-low-power operation of IoT nodes, avoid batteries’ eco-toxicity, and
decrease maintenance costs due to battery replacement. The solutions offer high integration levels
based on system-on-chip and system-in-package concepts in low-cost complementary metal-oxide-
semiconductor technologies to limit these nodes’ costs and footprints. In particular, the presentation
covers solutions for ultra-low-power wireless communication systems based on high-frequency (HF)
and ultra-high frequency (UHF) radio frequency identification (RFID) technologies. The talk offers RF
design solutions for HF and UHF RFID systems, revealing how to develop passive miniaturized IoT
nodes that operate robustly in harsh application environments.



  Date and Time

  Location

  Hosts

  Registration



  • Date: 12 Aug 2024
  • Time: 05:00 PM to 06:00 PM
  • All times are (UTC+10:00) Canberra
  • Add_To_Calendar_icon Add Event to Calendar
  • RMIT University
  • Melbourne, Victoria
  • Australia
  • Building: 80
  • Room Number: 80.02.17

  • Contact Event Host
  • Starts 05 July 2024 12:00 AM
  • Ends 12 August 2024 06:00 PM
  • All times are (UTC+10:00) Canberra
  • No Admission Charge


  Speakers

A/Prof. Jasmin Grosinger of Graz University of Technology in Austria

Topic:

RF Design for Ultra-Low-Power Wireless Communication Systems

Biography:

Jasmin Grosinger is an Associate Professor at the Graz University of Technology in Austria and a Visiting Associate Professor at the Tohoku University in Sendai, Japan. She earned her MSc from the Vienna University of Technology and worked as a Project Assistant with the Institute of Telecommunications. She later became a Laboratory Associate with Disney Research in Pittsburgh, USA. In 2012, she received her PhD from the Vienna University of Technology. Since 2013, she has researched (ultra-)low-power microwave components and systems at Graz University of Technology’s Institute of Microwave and Photonic Engineering. Jasmin has also been a Guest Professor at Friedrich-Alexander-University Erlangen-Nuremberg’s Institute of Electronics Engineering. She is an IEEE Senior Member, and her research has resulted in more than 80 peer-reviewed publications and one US patent. Jasmin is actively involved in the Technical Program and Steering Committees of various microwave-related conferences and is an Associate Editor of the IEEE Microwave and Wireless Technology Letters. She is also a member of the IEEE Microwave Theory and Techniques Society (MTT-S) and was selected as a Distinguished Microwave Lecturer. In 2022, Jasmin served as the MTT-S S Administrative Committee (AdCom) Secretary. Since 2023, she has served as an Elected Voting Member of the IEEE MTT-S AdCom, chairing the Meetings and Symposia Committee in 2024.