Séminaire Section de Québec de l'IEEE - Chapitre communications/traitement du signal
Séminaire organisé par le chapitre communications/traitement du signal de la section de Québec de l'IEEE.
Date and Time
Location
Hosts
Registration
- Date: 14 Nov 2024
- Time: 04:00 PM to 05:00 PM
- All times are (UTC-05:00) Eastern Time (US & Canada)
- Add Event to Calendar
- Université Laval
- 1065 avenue de la Médecine
- Québec, Quebec
- Canada G1V 0A6
- Building: Pavillon Adrien-Pouliot
- Room Number: 1120
- Starts 29 October 2024 12:00 AM
- Ends 14 November 2024 12:00 AM
- All times are (UTC-05:00) Eastern Time (US & Canada)
- No Admission Charge
Speakers
Md. Zoheb Hassan of Université Laval
Context-Aware, Intelligent, and Flexible Spectrum Sharing for Next Generation Wireless Networks in FR3 Band: Challenges
The 6G wireless network is envisioned to support several advanced use cases, such as immersive communications, wireless sensing and localization, intelligent transportation, digital twins, and non-terrestrial communications, among others. While these services promise to reshape our daily lives with enhanced connectivity, realizing them will require significant bandwidth. Recent studies indicate that 6G networks may need an additional 1.5-2.2 GHz of spectrum to support these advanced use cases and meet the exponentially growing demand for mobile broadband traffic. Unfortunately, the spectrum currently allocated to 5G networks is either overly congested (e.g., sub-6 GHz or FR1 band) or has unreliable propagation characteristics (e.g., millimeter-wave or FR2 band). Recently, the FR3 band, spanning frequencies from 7 GHz to 24 GHz and also known as the mid-band, has gained significant attention as a potential solution to meet the expanded bandwidth requirements of 6G networks. The FR3 band offers high bandwidth and more reliable propagation characteristics. The World Radiocommunication Conference (WRC) 2023 has identified three FR3 bands (4.4-4.8 GHz, 7.125-8.4 GHz, and 14.8-15.45 GHz) for further study regarding 6G network deployment. However, in North America (U.S. and Canada), the FR3 band is primarily licensed to various federal and non-federal services, including fixed satellite services, fixed services, direct broadcast satellite services (for TV), and scientific applications for astronomy and weather monitoring. These legacy services are extremely sensitive to interference as they are not designed to coexist with high-power cellular networks and relocating them to alternative bands is both challenging and time-consuming. Consequently, ensuring harmonious coexistence between beyond-5G cellular networks and incumbent systems is a key challenge in accommodating cellular networks within the FR3 band and requires advanced spectrum-sharing mechanisms.
Dynamic spectrum sharing (DSS) with context-awareness and precise knowledge of the spectrum coexistence environment represents a novel approach to addressing the challenges of sharing the FR3 band. Traditional rule-based spectrum-sharing approaches tend to consider worst-case coexistence scenarios to protect incumbent users, resulting in severe underutilization of shared spectrum. However, the FR3 band encompasses numerous context variables that, when leveraged through an intelligent and adaptive DSS framework, can create adequate spectrum for coexisting wireless networks without harming sensitive incumbent operations. This talk will first explore the key context variables necessary for spectrum sharing within the FR3 band and introduce an advanced DSS framework tailored for this band. Subsequently, it will present an interference evaluation case study for context-aware spectrum sharing in the 12 GHz band. Finally, the talk will discuss how context awareness can be utilized to develop advanced base station control algorithms that simultaneously improve the network capacity of cellular systems and protect incumbents from harmful interference. Challenges and potential future research directions for context-aware spectrum sharing will also be addressed.
Biography:
Md. Zoheb Hassan est professeur adjoint au Département de génie électrique et de génie informatique de l'Université Laval. Avant de se joindre à l'Université Laval en 2023, il a été chercheur postdoctoral principal à l'École de technologie supérieure (ÉTS) et professeur adjoint de recherche à Virginia Tech, États-Unis. Le Dr Hassan a obtenu son doctorat de l'Université de la Colombie-Britannique. Ses recherches portent sur les jumeaux numériques, le partage dynamique du spectre, la gestion des interférences et l'optimisation des ressources radio pour les réseaux sans fil de nouvelle génération. Il est l'auteur de plus de 35 articles de revues de l'IEEE et de 25 communications lors de conférences de l'IEEE et a reçu la prestigieuse bourse de recherche postdoctorale du CRSNG, se classant au premier rang des candidats au Canada. Le Dr Hassan est éditeur du IEEE Internet of Things Journal et siège au comité de programme technique (TPC) d’importantes conférences de l'IEEE, notamment GLOBECOM, ICC, MILCOM, VTC et PIMRC.
Email:
Address:Département de génie électrique et de génie informatique, Université Laval, Québec, Quebec, Canada, G1V 0A6